Axial Behavior of Concrete-Filled Double-Skin Tubular Stub Columns Incorporating PVC Pipes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Properties of Concrete
2.3. Properties of Steel Tubes
2.4. Properties of PVC Pipes
2.5. Test Procedure
3. Results and Discussion
3.1. Failure Modes
3.2. Effect of Inner Tube of Distinct Materials
3.3. Effect of Bo/t Outer Tube Slenderness
3.4. Effect of Outer-to-Inner Tube Dimension Ratio
3.5. Effect of Inner Tube on Strength Index
3.6. Effect of Inner Tube on Concrete Contribution Ratio
3.7. Axial Capacity of CFDST Column
3.7.1. AISC Specifications
3.7.2. Han’s Equation
3.7.3. Euro Code 4
3.7.4. Comparison of Axial Capacity
4. Conclusions and Recommendations
- Almost a similar reduction in the axial load capacity of CFDST and CFSPT columns was noted with a similar reduction in the outer tube width to the outer tube thickness ratio (Bo/t). The average strength of CFDSTs and CFSPTs was reduced by 42% and 47%, respectively, with the reduction in Bo/t by 25%.
- Generally, the increasing trend in the strength of CFDST columns was observed with an increase in the outer-to-inner tube dimension ratio. This increase may have been due to the availability of a smaller area for the proper placement and compaction of infilled concrete.
- No significant variation occurred in the ultimate axial capacity of CFDST columns with the inner PVC pipe compared to the steel inner tube. With the replacement of the inner tube of steel with a PVC pipe, on average, less than 10% strength was reduced, irrespective of the size and dimensions of the steel tube.
- No eminent variation in the strength index and concrete contribution ratio was observed with the inner PVC pipe compared to the steel inner tube. For both groups of samples (CFDSTs and CFSPTs), the strength index was lesser than 1.
- The capacity of CFDST columns with an inner steel tube was well predicted by the AISC strength equation, while the estimation of strength by Han’s equation showed more accurate results for CFSPTs.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, C.C.; Chen, C.C.; Shen, J.H. Effects of steel-to-member depth ratio and axial load on flexural ductility of concrete-encased steel composite columns. Eng. Struct. 2018, 155, 157–166. [Google Scholar] [CrossRef]
- Rehman, S.K.U.; Ibrahim, Z.; Memon, S.A.; Jameel, M. Nondestructive test methods for concrete bridges: A review. Constr. Build. Mater. 2016, 107, 58–86. [Google Scholar] [CrossRef] [Green Version]
- Baghi, H.; Menkulasi, F.; Parker, J.; Barros, J.A.O. Development of a High-Performance Concrete Deck for Louisiana’s Movable Bridges: Numerical Study. J. Bridg. Eng. 2017, 22, 04017028. [Google Scholar] [CrossRef] [Green Version]
- Javed, M.F.; Hafizah, N.; Memon, S.A.; Jameel, M.; Aslam, M. Recent research on cold-formed steel beams and columns subjected to elevated temperature: A review. Constr. Build. Mater. 2017, 144, 686–701. [Google Scholar] [CrossRef]
- Imran, M.; Mahendran, M.; Keerthan, P. Mechanical properties of cold-formed steel tubular sections at elevated temperatures. J. Constr. Steel Res. 2018, 143, 131–147. [Google Scholar] [CrossRef]
- Abramski, M.; Korzeniowski, P.; Klempka, K. Experimental Studies of Concrete-Filled Composite Tubes under Axial Short- and Long-Term Loads. Materials 2020, 13, 2080. [Google Scholar] [CrossRef]
- Chen, Z.; Tang, J.; Zhou, X.; Zhou, J.; Chen, J. Interfacial Bond Behavior of High Strength Concrete Filled Steel Tube after Exposure to Elevated Temperatures and Cooled by Fire Hydrant. Materials 2019, 13, 150. [Google Scholar] [CrossRef] [Green Version]
- Ding, F.; Liao, C.; Wang, E.; Lyu, F.; Xu, Y.; Liu, Y.; Feng, Y.; Shang, Z. Numerical Investigation of the Composite Action of Axially Compressed Concrete-Filled Circular Aluminum Alloy Tubular Stub Columns. Materials 2021, 14, 2435. [Google Scholar] [CrossRef]
- Krishan, A.; Rimshin, V.; Troshkina, E. Experimental research of the strength of compressed concrete filled steel tube elements. In International Scientific Siberian Transport Forum; Springer: Cham, Switzerland, 2020; pp. 560–566. [Google Scholar]
- Krishan, A.L.; I Rimshin, V.; A Troshkina, E. Deformability of Volume-Compressed Concrete Core of Concrete Filled Steel Tube Columns. IOP Conf. Ser. Mater. Sci. Eng. 2020, 753, 022053. [Google Scholar] [CrossRef]
- Liu, L.; He, L.; Cheng, Z.; Wang, X.; Ma, Z.; Cheng, X. Interface Bonding Behavior of Concrete-Filled Steel Tube Blended with Circulating Fluidized Bed Bottom Ash. Materials 2021, 14, 1529. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Ding, X.; Li, X.; Liu, Y.; Zhao, S. Behavior of Rectangular-Sectional Steel Tubular Columns Filled with High-Strength Steel Fiber Reinforced Concrete Under Axial Compression. Materials 2019, 12, 2716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Cao, W.; Zhang, J.; Wang, R.; Ren, L. Mechanical Behavior of Recycled Aggregate Concrete-Filled Steel Tubular Columns before and after Fire. Materials 2017, 10, 274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, J.; Zhou, T.; Du, Q.; Li, K.; Jin, L. Research on the Bond Behavior of Preplaced Aggregate Concrete-Filled Steel Tube Columns. Materials 2020, 13, 300. [Google Scholar] [CrossRef] [Green Version]
- Lyu, X.; Xu, Y.; Xu, Q.; Yu, Y. Axial Compression Performance of Square Thin Walled Concrete-Filled Steel Tube Stub Columns with Reinforcement Stiffener under Constant High-Temperature. Materials 2019, 12, 1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Y.; Tu, Y. Flexural Strength Evaluation of Multi-Cell Composite T-Shaped Concrete-Filled Steel Tubular Beams. Materials 2021, 14, 2838. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Xia, J.; Li, G.; Guo, Z.; Chang, H.; Wang, K. Degradation of Axial Ultimate Load-Bearing Capacity of Circular Thin-Walled Concrete-Filled Steel Tubular Stub Columns after Corrosion. Materials 2020, 13, 795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alatshan, F.; Osman, S.A.; Mashiri, F.; Hamid, R. Explicit Simulation of Circular CFST Stub Columns with External Steel Confinement under Axial Compression. Materials 2019, 13, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Nini, A.; Nikbakht, E.; Syamsir, A.; Shafiq, N.; Mohammed, B.S.; Al-Fakih, A.; Al-Nini, W.; Amran, Y.H.M. Flexural Behavior of Double-Skin Steel Tube Beams Filled with Fiber-Reinforced Cementitious Composite and Strengthened with CFRP Sheets. Materials 2020, 13, 3064. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-H.; Lu, G.-B.; Zhou, X.-H. Experimental study of the cyclic behavior of concrete-filled double skin steel tube columns subjected to pure torsion. Thin-Walled Struct. 2018, 122, 425–438. [Google Scholar] [CrossRef]
- Pagoulatou, M.; Sheehan, T.; Dai, X.; Lam, D. Finite element analysis on the capacity of circular concrete-filled double-skin steel tubular (CFDST) stub columns. Eng. Struct. 2014, 72, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Han, L.-H.; Chan, T.-M. Tensile behaviour of concrete-filled double-skin steel tubular members. J. Constr. Steel Res. 2014, 99, 35–46. [Google Scholar] [CrossRef]
- Huang, H.; Han, L.-H.; Tao, Z.; Zhao, X.-L. Analytical behaviour of concrete-filled double skin steel tubular (CFDST) stub columns. J. Constr. Steel Res. 2010, 66, 542–555. [Google Scholar] [CrossRef]
- Han, L.-H.; Huang, H.; Zhao, X.-L. Analytical behaviour of concrete-filled double skin steel tubular (CFDST) beam-columns under cyclic loading. Thin-Walled Struct. 2009, 47, 668–680. [Google Scholar] [CrossRef]
- Uenaka, K.; Kitoh, H.; Sonoda, K. Concrete filled double skin circular stub columns under compression. Thin-Walled Struct. 2010, 48, 19–24. [Google Scholar] [CrossRef]
- Lu, H.; Han, L.-H.; Zhao, X.-L. Fire performance of self-consolidating concrete filled double skin steel tubular columns: Experiments. Fire Saf. J. 2010, 45, 106–115. [Google Scholar] [CrossRef]
- Wang, F.-C.; Han, L.-H.; Li, W. Analytical behavior of CFDST stub columns with external stainless steel tubes under axial compression. Thin-Walled Struct. 2018, 127, 756–768. [Google Scholar] [CrossRef]
- Zhao, X.-L.; Grzebieta, R. Strength and ductility of concrete filled double skin (SHS inner and SHS outer) tubes. Thin-Walled Struct. 2002, 40, 199–213. [Google Scholar] [CrossRef]
- Tao, Z.; Han, L.-H.; Zhao, X.-L. Behaviour of concrete-filled double skin (CHS inner and CHS outer) steel tubular stub columns and beam-columns. J. Constr. Steel Res. 2004, 60, 1129–1158. [Google Scholar] [CrossRef]
- Tao, Z.; Han, L.-H. Behaviour of concrete-filled double skin rectangular steel tubular beam–columns. J. Constr. Steel Res. 2006, 62, 631–646. [Google Scholar] [CrossRef]
- Li, W.; Ren, Q.-X.; Han, L.-H.; Zhao, X.-L. Behaviour of tapered concrete-filled double skin steel tubular (CFDST) stub columns. Thin-Walled Struct. 2012, 57, 37–48. [Google Scholar] [CrossRef]
- Li, W.; Han, L.-H.; Ren, Q.-X.; Zhao, X.-L. Behavior and calculation of tapered CFDST columns under eccentric compression. J. Constr. Steel Res. 2013, 83, 127–136. [Google Scholar] [CrossRef]
- Han, L.H.; Ren, Q.X.; Li, W. Tests on stub stainless steel—concrete—carbon steel double-skin tubular (DST) columns. J. Constr. Steel Res. 2011, 67, 437–452. [Google Scholar] [CrossRef]
- Han, T.H.; Stallings, J.M.; Kang, Y.J. Nonlinear concrete model for double-skinned composite tubular columns. Constr. Build. Mater. 2010, 24, 2542–2553. [Google Scholar] [CrossRef]
- Farajpourbonab, E.; Ebrahim, F. Effective parameters on the behavior of CFDST columns. J. Appl. Eng. Sci. 2017, 15, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; Ho, J. Concrete-filled double-skin tubular columns with external steel rings. In Proceedings of the Australian Earthquake Engineering Society 2012 Conference, Gold Coast, Australia, 7–9 December 2012. [Google Scholar]
- Haas, T.N.; Koen, A. Eccentric loading of CFDST columns. Int. J. Civ. Environ. Struct. Constr. Archit. Eng. 2014, 8, 1262–1266. [Google Scholar]
- Romero, M.L.; Espinós, A.; Portolés, J.; Hospitaler, A.; Ibáñez, C. Slender double-tube ultra-high strength concrete-filled tubular columns under ambient temperature and fire. Eng. Struct. 2015, 99, 536–545. [Google Scholar] [CrossRef] [Green Version]
- Han, L.-H.; Tao, Z.; Huang, H.; Zhao, X.-L. Concrete-filled double skin (SHS outer and CHS inner) steel tubular beam-columns. Thin-Walled Struct. 2004, 42, 1329–1355. [Google Scholar] [CrossRef]
- Elchalakani, M.; Zhao, X.-L.; Grzebieta, R. Tests on concrete filled double-skin (CHS outer and SHS inner) composite short columns under axial compression. Thin-Walled Struct. 2002, 40, 415–441. [Google Scholar] [CrossRef]
- Yang, J.; Xu, H.; Peng, G. Behavior of concrete-filled double skin steel tubular columns with octagon section under axial compression. Front. Arch. Civ. Eng. China 2008, 2, 205–210. [Google Scholar] [CrossRef]
- Wang, J.; Li, B.; Wang, D.; Zhao, C. Cyclic testing of steel beam blind bolted to CFST column composite frames with SBTD concrete slabs. Eng. Struct. 2017, 148, 293–311. [Google Scholar] [CrossRef]
- Rashid, K.; Yazdanbakhsh, A.; Rehman, M.-U. Sustainable selection of the concrete incorporating recycled tire aggregate to be used as medium to low strength material. J. Clean. Prod. 2019, 224, 396–410. [Google Scholar] [CrossRef]
- ASTM International Committee C09 on Concrete and Concrete Aggregates. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens; ASTM International: West Conshohocken, PA, USA, 2001. [Google Scholar]
- ASTM, E. 8M: Standard test methods for tension testing of metallic materials (Metric). In Annual Book of ASTM Standards; ASTM International: West Conshohocken, PA, USA, 2003; Volume 3. [Google Scholar]
- Romero, M.L.; Ibáñez, C.; Espinós, A.; Portolés, J.; Hospitaler, A. Influence of Ultra-high Strength Concrete on Circular Concrete-filled Dual Steel Columns. Struct. 2017, 9, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.-B.; Tao, Z.; Yu, Q. Axial compressive behaviour of concrete-filled double-tube stub columns with stiffeners. Thin-Walled Struct. 2017, 120, 91–104. [Google Scholar] [CrossRef]
- Hassanein, M.; Kharoob, O.; Liang, Q. Circular concrete-filled double skin tubular short columns with external stainless steel tubes under axial compression. Thin-Walled Struct. 2013, 73, 252–263. [Google Scholar] [CrossRef]
- Hassanein, M.; Kharoob, O. Analysis of circular concrete-filled double skin tubular slender columns with external stainless steel tubes. Thin-Walled Struct. 2014, 79, 23–37. [Google Scholar] [CrossRef]
- Ekmekyapar, T.; Al-Eliwi, B.J. Concrete filled double circular steel tube (CFDCST) stub columns. Eng. Struct. 2017, 135, 68–80. [Google Scholar] [CrossRef]
- Teng, J.-G.; Wang, Z.; Yu, T.; Zhao, Y.; Li, L.-J. Double-tube concrete columns with a high-strength internal steel tube: Concept and behaviour under axial compression. Adv. Struct. Eng. 2018, 21, 1585–1594. [Google Scholar] [CrossRef]
- Yuan, F.; Chen, M.; Huang, H.; Xie, L.; Wang, C. Circular concrete filled steel tubular (CFST) columns under cyclic load and acid rain attack: Test simulation. Thin-Walled Struct. 2018, 122, 90–101. [Google Scholar] [CrossRef]
- Hassanein, M.; Patel, V. Round-ended rectangular concrete-filled steel tubular short columns: FE investigation under axial compression. J. Constr. Steel Res. 2018, 140, 222–236. [Google Scholar] [CrossRef]
- Li, W.; Han, L.-H.; Zhao, X.-L. Axial strength of concrete-filled double skin steel tubular (CFDST) columns with preload on steel tubes. Thin-Walled Struct. 2012, 56, 9–20. [Google Scholar] [CrossRef]
- Wang, W.-H.; Han, L.-H.; Li, W.; Jia, Y.-H. Behavior of concrete-filled steel tubular stub columns and beams using dune sand as part of fine aggregate. Constr. Build. Mater. 2014, 51, 352–363. [Google Scholar] [CrossRef]
- Han, L.-H. Tests on stub columns of concrete-filled RHS sections. J. Constr. Steel Res. 2002, 58, 353–372. [Google Scholar] [CrossRef]
- Leon, R.T.; Hajjar, J.F. Limit State Response of Composite Columns and Beam-Columns. Part II: Application of Design Provisions for 2005 AISC Specification. Eng. J. 2008, 45, 21–46. [Google Scholar]
- Han, L.-H.; Tao, Z.; Liu, W. Concrete filled steel tubular structures from theory to practice. J. Fuzhou Univ. 2017, 6, 3. [Google Scholar]
- Roik, K.; Bergmann, R. EUROCODE 4: Composite Columns; Report EC4/6; Ruhr-Universität Bochum: Bochum, Germany, 2005. [Google Scholar]
Specimen Name | Group of Combinations | Outer Width (mm) | Inner Diameter (mm) | Type of Inner Tube | Bo/Di Ratio | Bo/to Ratio |
---|---|---|---|---|---|---|
SS100-37.5 | G1 | 100 | 37.5 | Steel | 2.67 | 83.30 |
SS100-31.25 | 100 | 31.25 | Steel | 3.20 | 83.30 | |
SS75-37.5 | 75 | 37.5 | Steel | 2.00 | 62.40 | |
SS75-31.25 | 75 | 31.25 | Steel | 2.40 | 62.40 | |
SP100-37.5 | G2 | 100 | 37.5 | Plastic | 2.67 | 83.30 |
SP100-31.25 | 100 | 31.25 | Plastic | 3.20 | 83.30 | |
SP75-37.5 | 75 | 37.5 | Plastic | 2.00 | 62.40 | |
SP75-31.25 | 75 | 31.25 | Plastic | 2.40 | 62.40 |
Tube Type | Yield Strength (MPa) | Ultimate Strength (MPa) | Elastic Modulus (MPa) | Poisson’s Ratio |
---|---|---|---|---|
Square steel | 210 | 350 | 210,000 | 0.3 |
Circular steel | 300 | 362 | 205,000 | 0.3 |
PVC | 50 | 70 | 2620 | 0.34 |
Concrete | 18 | 20 | 35,300 | 0.2 |
Specimen Name | Aos (mm2) | Ais (mm2) | Ac (mm2) | SI | CCR |
---|---|---|---|---|---|
SS100-37.5 | 480 | 141.37 | 8657.5 | 0.69 | 1.41 |
SS100-31.25 | 480 | 117.81 | 8994.8 | 0.64 | 1.38 |
SS75-37.5 | 360 | 141.37 | 4342.5 | 0.58 | 0.93 |
SS75-31.25 | 360 | 117.81 | 4679.8 | 0.67 | 1.13 |
SP100-37.5 | 480 | 141.37 | 8657.5 | 0.75 | 1.78 |
SP100-31.25 | 480 | 117.81 | 8994.8 | 0.68 | 1.67 |
SP75-37.5 | 360 | 141.37 | 4342.5 | 0.63 | 1.15 |
SP75-31.25 | 360 | 117.81 | 4679.8 | 0.71 | 1.36 |
Specimen Name | B0/Di | ||||
---|---|---|---|---|---|
SS100-37.5 | 2.67 | 202.85 | 251 | 254 | 269 |
SS100-31.25 | 3.20 | 188.46 | 250 | 249 | 269 |
SS75-37.5 | 2.00 | 117.86 | 164 | 182 | 167 |
SS75-31.25 | 2.40 | 133.72 | 162 | 177 | 167 |
SP100-37.5 | 2.67 | 192.63 | 220 | 197 | 239 |
SP100-31.25 | 3.20 | 177.47 | 224 | 202 | 243 |
SP75-37.5 | 2.00 | 103.72 | 135 | 126 | 141 |
SP75-31.25 | 2.40 | 120.53 | 139 | 130 | 145 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javed, M.F.; Rafiq, H.; Khan, M.A.; Aslam, F.; Musarat, M.A.; Vatin, N.I. Axial Behavior of Concrete-Filled Double-Skin Tubular Stub Columns Incorporating PVC Pipes. Crystals 2021, 11, 1434. https://doi.org/10.3390/cryst11121434
Javed MF, Rafiq H, Khan MA, Aslam F, Musarat MA, Vatin NI. Axial Behavior of Concrete-Filled Double-Skin Tubular Stub Columns Incorporating PVC Pipes. Crystals. 2021; 11(12):1434. https://doi.org/10.3390/cryst11121434
Chicago/Turabian StyleJaved, Muhammmad Faisal, Haris Rafiq, Mohsin Ali Khan, Fahid Aslam, Muhammad Ali Musarat, and Nikolai Ivanovich Vatin. 2021. "Axial Behavior of Concrete-Filled Double-Skin Tubular Stub Columns Incorporating PVC Pipes" Crystals 11, no. 12: 1434. https://doi.org/10.3390/cryst11121434
APA StyleJaved, M. F., Rafiq, H., Khan, M. A., Aslam, F., Musarat, M. A., & Vatin, N. I. (2021). Axial Behavior of Concrete-Filled Double-Skin Tubular Stub Columns Incorporating PVC Pipes. Crystals, 11(12), 1434. https://doi.org/10.3390/cryst11121434