Symmetric Excitons in an (001)-Based InAs/GaAs Quantum Dot Near Si Dopant for Photon-Pair Entanglement
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. D3h Symmetric Exciton Emissions
3.2. FSS Field Dependence
3.3. XX–X Photon-Pair Correlations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Keil, R.; Zopf, M.; Chen, Y.; Höfer, B.; Zhang, J.; Ding, F.; Schmidt, O.G. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions. Nat. Commun. 2017, 8, 15501. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Su, R.; Wei, Y.; Yao, B.; Da Silva, S.F.C.; Yu, Y.; Iles-Smith, J.; Srinivasan, K.; Rastelli, A.; Li, J.; et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat. Nanotechnol. 2019, 14, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Hudson, A.J.; Stevenson, R.M.; Bennett, A.J.; Young, R.J.; Nicoll, C.A.; Atkinson, P.; Cooper, K.; Ritchie, D.A.; Shields, A.J. Coherence of an Entangled Exciton-Photon State. Phys. Rev. Lett. 2007, 99, 266802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Wildmann, J.S.; Ding, F.; Trotta, R.; Huo, Y.; Zallo, E.; Huber, D.; Rastelli, A.; Schmidt, O.G. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots. Nat. Commun. 2015, 6, 10067. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-S.; Ma, B.; Shang, X.-J.; He, Y.; Zhang, L.-C.; Ni, H.-Q.; Wang, J.-L.; Niu, Z.-C. Telecommunication Wavelength-Band Single-Photon Emission from Single Large InAs Quantum Dots Nucleated on Low-Density Seed Quantum Dots. Nanoscale Res. Lett. 2016, 11, 382. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.-S.; Zhou, Z.-Q.; Wang, Y.-T.; Li, Y.-L.; Liu, X.; Hua, Y.-L.; Zou, Y.; Wang, S.; He, D.-Y.; Chen, G.; et al. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory. Nat. Commun. 2015, 6, 8652. [Google Scholar] [CrossRef] [Green Version]
- Birowosuto, M.D.; Sumikura, H.; Matsuo, S.; Taniyama, H.; Van Veldhoven, P.J.; Nötzel, R.; Notomi, M. Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling. Sci. Rep. 2012, 2, 321. [Google Scholar] [CrossRef] [Green Version]
- Sapienza, L.; Malein, R.N.; Kuklewicz, C.E.; Kremer, P.E.; Srinivasan, K.; Griffiths, A.; Clarke, E.; Gong, M.; Warburton, R.J.; Gerardot, B.D. Exciton fine-structure splitting of telecom-wavelength single quantum dots: Statistics and external strain tuning. Phys. Rev. B 2013, 88, 155330. [Google Scholar] [CrossRef] [Green Version]
- Seidl, S.; Gerardot, B.; Dalgarno, P.; Kowalik, K.; Holleitner, A.W.; Petroff, P.M.; Karrai, K.; Warburton, R.J. Statistics of quantum dot exciton fine structure splittings and their polarization orientations. Phys. E Low-Dimens. Syst. Nanostruct. 2008, 40, 2153–2155. [Google Scholar] [CrossRef]
- Su, D.; Dou, X.; Wu, X.; Liao, Y.; Zhou, P.; Ding, K.; Ni, H.; Niu, Z.; Zhu, H.; Jiang, D.; et al. Tuning exciton energy and fine-structure splitting in single InAs quantum dots by applying uniaxial stress. AIP Adv. 2016, 6, 045204. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Zhuo, Z.; Huang, J.; Dou, X.; He, X.; Ding, K.; Ni, H.; Niu, Z.; Jiang, D.; Sun, B. Correlation between exciton polarized lifetime and fine structure splitting in InAs/GaAs quantum dots. Appl. Phys. Lett. 2020, 116, 082101. [Google Scholar] [CrossRef]
- Seguin, R.; Schliwa, A.; Germann, T.D.; Rodt, S.; Potschke, K.; Pohl, U.W.; Bimberg, D.; Winkelnkemper, M.; Hammerschmidt, T.; Kratzer, P. Control of fine-structure splitting and excitonic binding energies in selected individual InAs/GaAs quantum dots. Appl. Phys. Lett. 2006, 89, 263109. [Google Scholar] [CrossRef] [Green Version]
- Treu, J.; Schneider, C.; Huggenberger, A.; Braun, T.; Reitzenstein, S.; Höfling, S.; Kamp, M. Substrate orientation dependent fine structure splitting of symmetric In(Ga)As/GaAs quantum dots. Appl. Phys. Lett. 2012, 101, 022102. [Google Scholar] [CrossRef]
- Juska, G.; Dimastrodonato, V.; Mereni, L.O.; Gocalinska, A.; Pelucchi, E. Towards quantum-dot arrays of entangled photon emitters. Nat. Photon. 2013, 7, 527–531. [Google Scholar] [CrossRef]
- Mereni, L.O.; Marquardt, O.; Juska, G.; Dimastrodonato, V.; O’Reilly, E.P.; Pelucchi, E. Fine-structure splitting in large-pitch pyramidal quantum dots. Phys. Rev. B 2012, 85, 155453. [Google Scholar] [CrossRef]
- Karlsson, K.F.; Oberli, D.A.; Dupertuis, M.; Troncale, V.; Byszewski, M.; Pelucchi, E.; Rudra, A.; Holtz, P.O.; Kapon, E. Spectral signatures of high-symmetry quantum dots and effects of symmetry breaking. New J. Phys. 2015, 17, 103017. [Google Scholar] [CrossRef] [Green Version]
- Dupertuis, M.A.; Karlsson, F.; Oberli, D.; Pelucchi, E.; Rudra, A.; Holtz, P.O.; Kapon, E. Symmetries and the Polarized Optical Spectra of Exciton Complexes in Quantum Dots. Phys. Rev. Lett. 2011, 107, 127403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, A.J.; Pooley, M.A.; Stevenson, R.M.; Ward, M.B.; Patel, R.B.; De La Giroday, A.B.; Sköld, N.; Farrer, I.; Nicoll, C.A.; Ritchie, D.A.; et al. Electric-field-induced coherent coupling of the exciton states in a single quantum dot. Nat. Phys. 2010, 6, 947–950. [Google Scholar] [CrossRef]
- Trotta, R.; Zallo, E.; Ortix, C.; Atkinson, P.; Plumhof, J.D.; Brink, J.V.D.; Rastelli, A.; Schmidt, O.G. Universal Recovery of the Energy-Level Degeneracy of Bright Excitons in InGaAs Quantum Dots without a Structure Symmetry. Phys. Rev. Lett. 2012, 109, 147401. [Google Scholar] [CrossRef] [Green Version]
- Huber, D.; Reindl, M.; da Silva, S.F.C.; Schimpf, C.; Martín-Sánchez, J.; Huang, H.; Piredda, G.; Edlinger, J.; Rastelli, A.; Trotta, R. Strain-Tunable GaAs Quantum Dot: A Nearly Dephasing-Free Source of Entangled Photon Pairs on Demand. Phys. Rev. Lett. 2018, 121, 033902. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhang, J.; Zopf, M.; Jung, K.; Zhang, Y.; Keil, R.; Ding, F.; Schmidt, O.G. Wavelength-tunable entangled photons from silicon-integrated III–V. quantum dots. Nat. Commun. 2015, 7, 10387. [Google Scholar] [CrossRef] [Green Version]
- Belhadj, T.; Amand, T.; Kunold, A.; Simon, C.-M.; Kuroda, T.; Abbarchi, M.; Mano, T.; Sakoda, K.; Kunz, S.; Marie, X.; et al. Impact of heavy hole-light hole coupling on optical selection rules in GaAs quantum dots. Appl. Phys. Lett. 2010, 97, 051111. [Google Scholar] [CrossRef] [Green Version]
- Tonin, C.; Hostein, R.; Voliotis, V.; Grousson, R.; Lemaitre, A.; Martinez, A. Polarization properties of excitonic qubits in single self-assembled quantum dots. Phys. Rev. B 2012, 85, 155303. [Google Scholar] [CrossRef] [Green Version]
- Abbarchi, M.; Mano, T.; Kuroda, T.; Ohtake, A.; Sakoda, K. Polarization Anisotropies in Strain-Free, Asymmetric, and Symmetric Quantum Dots Grown by Droplet Epitaxy. Nanomaterials 2021, 11, 443. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.; Forrest, S.R. Intermediate-Band Solar Cells Employing Quantum Dots Embedded in an Energy Fence Barrier. Nano Lett. 2007, 7, 218. [Google Scholar] [CrossRef] [PubMed]
- Varghese, A.; Yakimov, M.; Tokranov, V.; Mitin, V.; Sablon, K.; Sergeev, A.; Oktyabrsky, S. Complete voltage recovery in quantum dot solar cells due to suppression of electron capture. Nanoscale 2016, 8, 7248. [Google Scholar] [CrossRef]
- Sablon, K.A.; Little, J.W.; Olver, K.A.; Wang, Z.M.; Dorogan, V.G.; Mazur, Y.I.; Salamo, G.J.; Towner, F.J. Effects of AlGaAs energy barriers on InAs/GaAs quantum dot solar cell. J. Appl. Phys. 2010, 108, 074305. [Google Scholar] [CrossRef]
- Li, M.F.; Yu, Y.; He, J.F.; Wang, L.J.; Zhu, Y.; Shang, X.J.; Ni, H.Q.; Niu, Z.C. In situ accurate control of 2D-3D transition parameters for growth of low-density InAs/GaAs self-assembled quantum dots. Nanoscale Res. Lett. 2013, 8, 86. [Google Scholar] [CrossRef] [Green Version]
- Shang, X.-J.; Xu, J.-X.; Ma, B.; Chen, Z.-S.; Wei, S.-H.; Li, M.-F.; Zha, G.-W.; Zhang, L.-C.; Yu, Y.; Ni, H.-Q.; et al. Proper In deposition amount for on-demand epitaxy of InAs/GaAs single quantum dots. Chin. Phys. B 2016, 25, 107805. [Google Scholar] [CrossRef]
- Ma, B.; Chen, Z.S.; Wei, S.H.; Shang, X.J.; Ni, H.Q.; Niu, Z.C. Single photon extraction from self-assembled quantum dots via stable fiber array coupling. Appl. Phys. Lett. 2017, 110, 142104. [Google Scholar] [CrossRef]
- Yu, Y.; Shang, X.-J.; Li, M.-F.; Zha, G.-W.; Xu, J.-X.; Wang, L.-J.; Wang, G.-W.; Ni, H.-Q.; Dou, X.-M.; Sun, B.-Q.; et al. Single InAs quantum dot coupled to different “environments” in one wafer for quantum photonics. Appl. Phys. Lett. 2013, 102, 201103. [Google Scholar]
- Li, S.L.; Shang, X.J.; Chen, Y.; Su, X.; Hao, H.; Liu, H.; Zhang, Y.; Ni, H.Q.; Niu, Z.C. Wet-etched microlens array for 200 nm spatial isolation of epitaxial single QDs and 80 nm broadband enhancement of their quantum light extraction. Nanomaterials 2021, 11, 1136. [Google Scholar] [CrossRef]
- Shang, X.-J.; Ma, B.; Ni, H.Q.; Chen, Z.S.; Li, S.L.; Chen, Y.; He, X.; Su, X.; Shi, Y.; Niu, Z.-C. C2v and D3h symmetric InAs quantum dots on GaAs (001) substrate: Exciton emission and a defect field influence. AIP Adv. 2020, 10, 085126. [Google Scholar] [CrossRef]
- He, L.; Gong, M.; Li, C.F.; Guo, G.C.; Zunger, A. Highly Reduced Fine-Structure Splitting in InAs/InP Quantum Dots Offering an Efficient On-Demand Entangled 1.55-um Photon Emitter. Phys. Rev. Lett. 2008, 101, 157405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, H.S.; Sallen, G.; Abbarchi, M.; Ferreira, R.; Voisin, C.; Roussignol, P.; Cassabois, G.; Diederichs, C. Photoneutralization and slow capture of carriers in quantum dots probed by resonant excitation spectroscopy. Phys. Rev. B 2013, 87, 115305. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, H.Y.; Chou, Y.-L.; Cheng, S.-J. Effects of electrostatic environment on the electrically triggered production of entangled photon pairs from droplet epitaxial quantum dots. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef]
- Ghali, M.; Ohtani, K.; Ohno, Y.; Ohno, H. Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field. Nat. Commun. 2012, 3, 661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | QD No. | PA φ | LX θ | FSS | Sample | QD No. | PA φ | LX θ | FSS |
---|---|---|---|---|---|---|---|---|---|
A | QD24 | no | 103° | 3.9 μeV | A | QD25 | no | 0° | 10 μeV |
A | QD21 | 105o | 158° | 7.1 μeV | A | QD26 | no | - | 0 μeV |
A | QD22 | 135o | 60° | 19.8 μeV | B | QD27 | 100° | 12° | 34 μeV |
A | QD8 | −60o | 50° | 4.1 μeV | B | QD20 | −25° | 65° | 24 μeV |
A | QD3 | −45o | 50° | 6.8 μeV | B | QD19 | −20° | 55° | 5.9 μeV |
A | QD6 | −20o | 60° | 4.5 μeV | B | QD28 | 20o | 110° | 53 μeV |
A | QD23 | 0o | 90° | 6.2 μeV | C | QD30 | no | 65° | 8.8 μeV |
A | QD7 | 90o | 110° | 22 μeV | C | QD29 | 95° | 110° | 25 μeV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, X.; Li, S.; Liu, H.; Ma, B.; Su, X.; Chen, Y.; Shen, J.; Hao, H.; Liu, B.; Dou, X.; et al. Symmetric Excitons in an (001)-Based InAs/GaAs Quantum Dot Near Si Dopant for Photon-Pair Entanglement. Crystals 2021, 11, 1194. https://doi.org/10.3390/cryst11101194
Shang X, Li S, Liu H, Ma B, Su X, Chen Y, Shen J, Hao H, Liu B, Dou X, et al. Symmetric Excitons in an (001)-Based InAs/GaAs Quantum Dot Near Si Dopant for Photon-Pair Entanglement. Crystals. 2021; 11(10):1194. https://doi.org/10.3390/cryst11101194
Chicago/Turabian StyleShang, Xiangjun, Shulun Li, Hanqing Liu, Ben Ma, Xiangbin Su, Yao Chen, Jiaxin Shen, Huiming Hao, Bing Liu, Xiuming Dou, and et al. 2021. "Symmetric Excitons in an (001)-Based InAs/GaAs Quantum Dot Near Si Dopant for Photon-Pair Entanglement" Crystals 11, no. 10: 1194. https://doi.org/10.3390/cryst11101194
APA StyleShang, X., Li, S., Liu, H., Ma, B., Su, X., Chen, Y., Shen, J., Hao, H., Liu, B., Dou, X., Ji, Y., Sun, B., Ni, H., & Niu, Z. (2021). Symmetric Excitons in an (001)-Based InAs/GaAs Quantum Dot Near Si Dopant for Photon-Pair Entanglement. Crystals, 11(10), 1194. https://doi.org/10.3390/cryst11101194