Surface Acoustic Wave-Based Flexible Piezocomposite Strain Sensor
Abstract
:1. Introduction
2. Fabrication Process and Experimental Setup
2.1. Materials and Phase Information
2.2. Preparation of Piezocomposite with Hot Press Method
2.3. Substrate Poling
3. Interdigital Transducers Deposition through DDM
4. Results and Discussions
4.1. Chemical and Thermal Characterization
4.2. SEM Analysis
4.3. Effect of Micro- and Nano-Fillers in Piezo and Dielectric Properties of PVDF Polymer
4.4. Effect of Fillers in PVDF Polymer Mechanical Property
4.5. Strain Quantification Using DIC and SAW Strain Measurement
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, H.; Dong, S.; Xuan, W.; Farooq, U.; Huang, S.; Li, M.; Wu, T.; Jin, H.; Wang, X.; Luo, J. Flexible surface acoustic wave strain sensor based on single crystalline LiNbO3 thin film. Appl. Phys. Lett. 2018, 112, 093502. [Google Scholar] [CrossRef]
- Nicolay, P.; Chambon, H.; Bruckner, G.; Gruber, C.; Ballandras, S.; Courjon, E.; Stadler, M. A LN/Si-Based SAW Pressure Sensor. Sensors 2018, 18, 3482. [Google Scholar] [CrossRef] [Green Version]
- Reindl, L.; Shrena, I.; Kenshil, S.; Peter, R. Wireless measurement of temperature using surface acoustic waves sensors. In Proceedings of the IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, Tampa, FL, USA, 4–8 May 2003; pp. 935–941. [Google Scholar]
- Devkota, J.; Ohodnicki, P.R.; Greve, D.W. SAW sensors for chemical vapors and gases. Sensors 2017, 17, 801. [Google Scholar] [CrossRef] [Green Version]
- Feng, B.; Jin, H.; Fang, Z.; Yu, Z.; Dong, S.; Luo, J. Flexible strain sensor based on ultra-thin quartz plate. IEEE Sens. J. 2021, 21. [Google Scholar] [CrossRef]
- Li, L.; Peng, B.; Zhu, J.; He, Z.; Yang, Y.; Zhang, W. Strain Measurements With Langasite SAW Resonators at High Temperature. IEEE Sens. J. 2020, 21, 4688–4695. [Google Scholar] [CrossRef]
- Ren, J.; Anurakparadorn, K.; Gu, H.; Zhao, M.; Wei, X. Design of SAW sensor for longitudinal strain measurement with improved sensitivity. Microsyst. Technol. 2019, 25, 351–359. [Google Scholar] [CrossRef]
- Murphy, O.H.; Bahmanyar, M.R.; Borghi, A.; McLeod, C.N.; Navaratnarajah, M.; Yacoub, M.H.; Toumazou, C. Continuous in vivo blood pressure measurements using a fully implantable wireless SAW sensor. Biomed. Microdevices 2013, 15, 737–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, B.; Zhang, S.; Zhang, H.; Lv, W.; Zhang, C.; Lv, X.; San, H. Fabrications of L-Band LiNbO3-Based SAW Resonators for Aerospace Applications. Micromachines 2019, 10, 349. [Google Scholar] [CrossRef] [Green Version]
- Wilson, W.; Malocha, D.; Kozlovski, N.; Gallagher, D.; Fisher, B.; Pavlina, J.; Saldanha, N.; Puccio, D.; Atkinson, G. Orthogonal frequency coded SAW sensors for aerospace SHM applications. IEEE Sens. J. 2009, 9, 1546–1556. [Google Scholar] [CrossRef]
- Park, S.; Parmar, K.; Shajari, S.; Sanati, M. Polymeric carbon nanotube nanocomposite-based force sensors. CIRP Ann. 2016, 65, 361–364. [Google Scholar] [CrossRef]
- Sirohi, J.; Chopra, I. Fundamental understanding of piezoelectric strain sensors. J. Intell. Mater. Syst. Struct. 2000, 11, 246–257. [Google Scholar] [CrossRef]
- Ruan, L.; Yao, X.; Chang, Y.; Zhou, L.; Qin, G.; Zhang, X. Properties and Applications of the β Phase Poly (vinylidene fluoride). Polymers 2018, 10, 228. [Google Scholar] [CrossRef] [Green Version]
- Araújo, E.; Eiras, J. Structural, electric and ferroelectric properties of PZT films obtained using oxide precursors. J. Phys. Condens. Matter 1999, 11, 1975. [Google Scholar] [CrossRef]
- Gao, L.; Huang, Y.; Hu, Y.; Du, H. Dielectric and ferroelectric properties of (1− x) BaTiO3–xBi0. 5Na0. 5TiO3 ceramics. Ceram. Int. 2007, 33, 1041–1046. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, P.; Shao, S.; Su, W.; Wang, C. Dielectric and electrical properties of CaCu3Ti4O12 ceramics at high temperatures. Ferroelectrics 2007, 356, 85–89. [Google Scholar] [CrossRef]
- Kumar, G.S.; Vishnupriya, D.; Chary, K.S.; Patro, T.U. High dielectric permittivity and improved mechanical and thermal properties of poly (vinylidene fluoride) composites with low carbon nanotube content: Effect of composite processing on phase behavior and dielectric properties. Nanotechnology 2016, 27, 385702. [Google Scholar] [CrossRef]
- Ferreira, A.; Martínez, M.; Ansón-Casaos, A.; Gómez-Pineda, L.; Vaz, F.; Lanceros-Mendez, S. Relationship between electromechanical response and percolation threshold in carbon nanotube/poly (vinylidene fluoride) composites. Carbon 2013, 61, 568–576. [Google Scholar] [CrossRef]
- Thongsanitgarn, P.; Watcharapasorn, A.; Jiansirisomboon, S. Electrical and mechanical properties of PZT/PVDF 0–3 composites. Surf. Rev. Lett. 2010, 17, 1–7. [Google Scholar] [CrossRef]
- Arlt, K.; Wegener, M. Piezoelectric PZT/PVDF-copolymer 0-3 composites: Aspects on film preparation and electrical poling. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 1178–1184. [Google Scholar] [CrossRef]
- Chen, D.; Heyer, S.; Ibbotson, S.; Salonitis, K.; Steingrímsson, J.G.; Thiede, S. Direct digital manufacturing: Definition, evolution, and sustainability implications. J. Clean. Prod. 2015, 107, 615–625. [Google Scholar] [CrossRef]
- Sajkiewicz, P.; Wasiak, A.; Gocłowski, Z. Phase transitions during stretching of poly (vinylidene fluoride). Eur. Polym. J. 1999, 35, 423–429. [Google Scholar] [CrossRef]
- Bharti, V.; Kaura, T.; Nath, R. Ferroelectric hysteresis in simultaneously stretched and corona-poled PVDF films. IEEE Trans. Dielectr. Electr. Insul. 1997, 4, 738–741. [Google Scholar] [CrossRef]
- Gonçalves, R.; Lopes, A.; Botelho, G.; Neves, I.C.; Lanceros-Mendez, S. Influence of solvent properties on the electrical response of poly (vinylidene fluoride)/NaY composites. J. Polym. Res. 2013, 20, 143. [Google Scholar] [CrossRef]
- Gregorio, R., Jr. Determination of the α, β, and γ crystalline phases of poly (vinylidene fluoride) films prepared at different conditions. J. Appl. Polym. Sci. 2006, 100, 3272–3279. [Google Scholar] [CrossRef]
- Wang, H.; Cai, H.; Zhou, W.; Liu, S. Poly (Vinylidene Fluoride)/Mg Doped CaCu 3 Ti 4 O 12 Composites with Improved Dielectric Properties. MSE 2019, 472, 012008. [Google Scholar]
- Ouyang, X.; Cao, P.; Zhang, W.; Liu, Z.; Huang, Z.; Gao, W. CaCu 3 Ti 4 O 12–PVDF polymeric composites with enhanced capacitive energy density. Int. J. Mod. Phys. B 2015, 29, 1540003. [Google Scholar] [CrossRef]
- Vicente, J.; Costa, P.; Lanceros-Mendez, S.; Abete, J.M.; Iturrospe, A. Electromechanical properties of PVDF-based polymers reinforced with nanocarbonaceous fillers for pressure sensing applications. Material 2019, 12, 3545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, R.E.; Vijayalakshmi, K.; Bhuvaneswari, S.; Rajeev, R. Influence of process conditions and effect of functionalization in inducing time dependent polymorphic states in single walled carbon nanotube incorporated poly (vinylidene fluoride). SN Appl. Sci. 2019, 1, 978. [Google Scholar] [CrossRef] [Green Version]
- Seema, A.; Dayas, K.; Varghese, J.M. PVDF-PZT-5H composites prepared by hot press and tape casting techniques. J. Appl. Polym. Sci. 2007, 106, 146–151. [Google Scholar] [CrossRef]
- Jain, A.; KJ, P.; Sharma, A.K.; Jain, A.; PN, R. Dielectric and piezoelectric properties of PVDF/PZT composites: A review. Polym. Eng. Sci. 2015, 55, 1589–1616. [Google Scholar] [CrossRef]
- Liu, L.; Grunlan, J.C. Clay assisted dispersion of carbon nanotubes in conductive epoxy nanocomposites. Adv. Funct. Mater. 2007, 17, 2343–2348. [Google Scholar] [CrossRef]
- Waller, D.; Safari, A. Corona poling of PZT ceramics and flexible piezoelectric composites. Ferroelectrics 1988, 87, 189–195. [Google Scholar] [CrossRef]
- Kim, H.; Torres, F.; Wu, Y.; Villagran, D.; Lin, Y.; Tseng, T.-L.B. Integrated 3D printing and corona poling process of PVDF piezoelectric films for pressure sensor application. Smart Mater. Struct. 2017, 26, 085027. [Google Scholar] [CrossRef]
- Mahadeva, S.K.; Berring, J.; Walus, K.; Stoeber, B. Effect of poling time and grid voltage on phase transition and piezoelectricity of poly (vinyledene fluoride) thin films using corona poling. J. Phys. D Appl. Phys. 2013, 46, 285305. [Google Scholar] [CrossRef]
- Cai, X.; Lei, T.; Sun, D.; Lin, L. A critical analysis of the α, β and γ phases in poly (vinylidene fluoride) using FTIR. RSC Adv. 2017, 7, 15382–15389. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Pan, Z.; Wang, M.; Huang, S.; Liu, J.; Zhai, J. Polypyrrole random-coil induced permittivity from negative to positive in all-organic composite films. J. Mater. 2019, 6, 348–354. [Google Scholar] [CrossRef]
- Medeiros, K.A.R.; Rangel, E.Q.; Sant’Anna, A.R.; Louzada, D.R.; Barbosa, C.R.H.; d’Almeida, J.R.M. Evaluation of the electromechanical behavior of polyvinylidene fluoride used as a component of risers in the offshore oil industry. Oil Gas Sci.Technol. –Rev. d’IFP Energ. Nouv. 2018, 73, 48. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Sun, B.; Wu, P. Two-dimensional correlation infrared spectroscopic study on the crystallization and gelation of poly (vinylidene fluoride) in cyclohexanone. Appl. Spectrosc. 2008, 62, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Benz, M.; Euler, W.B. Determination of the crystalline phases of poly (vinylidene fluoride) under different preparation conditions using differential scanning calorimetry and infrared spectroscopy. J. Appl. Polym. Sci. 2003, 89, 1093–1100. [Google Scholar] [CrossRef]
- Salimi, A.; Yousefi, A.A. Conformational changes and phase transformation mechanisms in PVDF solution-cast films. J. Polym. Sci. Part B Polym. Phys. 2004, 42, 3487–3495. [Google Scholar] [CrossRef]
- Sanati, M.; Sandwell, A.; Mostaghimi, H.; Park, S.S. Development of Nanocomposite-Based Strain Sensor with Piezoelectric and Piezoresistive Properties. Sensors 2018, 18, 3789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Zaldívar, O.; Escamilla-Díaz, T.; Ramírez-Cardona, M.; Hernández-Landaverde, M.; Ramírez-Bon, R.; Yañez-Limón, J.; Calderón-Piñar, F. Ferroelectric-paraelectric transition in a membrane with quenched-induced δ-phase of PVDF. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
Sample | PVDF (wt. %) | PZT (wt. %) | CNT (wt. %) | CCTO (wt. %) |
---|---|---|---|---|
PVDF | 100 | - | - | - |
PVDF/PZT | 40 | 60 | - | - |
PVDF/PZT/CNTs | 40 | 59.75 | 0.25 | - |
PVDF/CNTs | 98 | - | 2 | - |
PVDF/CCTO | 40 | - | - | 60 |
Material | Thickness t (mm) | (pC/N) | ||
---|---|---|---|---|
PVDF | 0.25 | 12.3 | 155.3 | 8.95 |
PVDF/PZT | 0.51 | 21.6 | 247.5 | 9.86 |
PVDF/PZT/CNTs | 0.82 | 17.4 | 948.9 | 2.07 |
PVDF/CNTs | 0.72 | 33.5 | 725.2 | 5.22 |
PVDF/CCTO | 0.60 | 12.5 | 388.2 | 3.64 |
Material | Polarized | % Increase | |
---|---|---|---|
(pC/N) | |||
PVDF | 16 | 11.64 | 30.08 |
PVDF/PZT | 26 | 11.87 | 20.37 |
PVDF/PZT/CNTs | 28 | 3.33 | 60.91 |
PVDF/CNTs | 42 | 6.54 | 25.37 |
PVDF/CCTO | 18 | 5.24 | 44 |
Material | 0° (MHz) | 20° (MHz) | 40° (MHz) |
PVDF/PZT | 51.57 | 51.13 | 50.57 |
PVDF/PZT/CNTs | 45.95 | 44.57 | 42.88 |
PVDF/CNTs | 47.01 | 46.63 | 44.07 |
PVDF/CCTO | 49.26 | 48.82 | 48.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srinivasaraghavan Govindarajan, R.; Rojas-Nastrucci, E.; Kim, D. Surface Acoustic Wave-Based Flexible Piezocomposite Strain Sensor. Crystals 2021, 11, 1576. https://doi.org/10.3390/cryst11121576
Srinivasaraghavan Govindarajan R, Rojas-Nastrucci E, Kim D. Surface Acoustic Wave-Based Flexible Piezocomposite Strain Sensor. Crystals. 2021; 11(12):1576. https://doi.org/10.3390/cryst11121576
Chicago/Turabian StyleSrinivasaraghavan Govindarajan, Rishikesh, Eduardo Rojas-Nastrucci, and Daewon Kim. 2021. "Surface Acoustic Wave-Based Flexible Piezocomposite Strain Sensor" Crystals 11, no. 12: 1576. https://doi.org/10.3390/cryst11121576
APA StyleSrinivasaraghavan Govindarajan, R., Rojas-Nastrucci, E., & Kim, D. (2021). Surface Acoustic Wave-Based Flexible Piezocomposite Strain Sensor. Crystals, 11(12), 1576. https://doi.org/10.3390/cryst11121576