Enhancing the Optical Efficiency of Near-Eye Displays with Liquid Crystal Optics
Abstract
:1. Introduction
2. Method
2.1. Directional Display
2.2. Diffractive Deflection Film (DDF)
3. Experiment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, J.M.; Chan, K.W.; Gibson, I. Virtual reality. IEEE Potentials 1998, 17, 20–23. [Google Scholar] [CrossRef]
- Zhan, T.; Yin, K.; Xiong, J.; He, Z.; Wu, S.T. Augmented reality and virtual reality displays: Perspectives and challenges. iScience 2020, 23, 101397. [Google Scholar] [CrossRef]
- Huang, Y.; Hsiang, E.L.; Deng, M.Y.; Wu, S.T. Mini-LED, Micro-LED and OLED displays: Present status and future perspectives. Light Sci. Appl. 2020, 9, 105. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.L.; Yun, Z.; Ambur, G.; Etter, J. Folded optics with birefringent reflective polarizers. In Proceedings of the SPIE, Digital Optical Technologies, Munich, Germany, 25–29 June 2017; International Society for Optics and Photonics: Bellingham, WA, USA, 2017; Volume 10335, p. 103350E. [Google Scholar]
- Geng, Y.; Gollier, J.; Wheelwright, B.; Peng, F.; Sulai, Y.; Lewis, B.; Chan, N.; Lam, W.S.T.; Fix, A.; Lanman, D.; et al. Viewing optics for immersive near-eye displays: Pupil swim/size and weight/stray light. In Proceedings of the SPIE, Digital Optics for Immersive Displays, Strasbourg, France, 23–25 April 2018; International Society for Optics and Photonics: Bellingham, WA, USA, 2018; Volume 10676, p. 1067606. [Google Scholar]
- Chen, H.W.; Lee, J.H.; Lin, B.Y.; Chen, S.; Wu, S.T. Liquid crystal display and organic light-emitting diode display: Present status and future perspectives. Light Sci. Appl. 2018, 7, 17168. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.; Lee, J.H.; Lin, S.C.; Zhu, R.; Choi, S.H.; Wu, S.T. Analysis and optimization on the angular color shift of RGB OLED displays. Opt. Express 2017, 25, 33629–33642. [Google Scholar] [CrossRef]
- Joo, W.J.; Kyoung, J.; Esfandyarpour, M.; Lee, S.H.; Koo, H.; Song, S.; Kwon, Y.N.; Song, S.H.; Bae, J.C.; Jo, A.; et al. Metasurface-driven OLED displays beyond 10,000 pixels per inch. Science 2020, 370, 459–463. [Google Scholar] [CrossRef]
- Zhan, T.; Zou, J.; Xiong, J.; Liu, X.; Chen, H.; Yang, J.; Liu, S.; Dong, Y.; Wu, S.T. Practical Chromatic Aberration Correction in Virtual Reality Displays Enabled by Cost-Effective Ultra-Broadband Liquid Crystal Polymer Lenses. Adv. Opt. Mat. 2020, 8, 1901360. [Google Scholar] [CrossRef]
- Lee, Y.H.; Tan, G.; Zhan, T.; Weng, Y.; Liu, G.; Gou, F.; Peng, F.; Tabiryan, N.V.; Gauza, S.; Wu, S.T. Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities. Opt. Data Process. Storage 2017, 3, 79–88. [Google Scholar] [CrossRef]
- Zhan, T.; Lee, Y.H.; Tan, G.; Xiong, J.; Yin, K.; Gou, F.; Zou, J.; Zhang, N.; Zhao, D.; Yang, J.; et al. Pancharatnam-Berry optical elements for head-up and near-eye displays. J. Opt. Soc. Am. B Opt. Phys. 2019, 36, D52–D65. [Google Scholar] [CrossRef]
- Tabiryan, N.V.; Roberts, D.E.; Liao, Z.; Hwang, J.Y.; Moran, M.; Ouskova, O.; Pshenichnyi, A.; Sigley, J.; Tabirian, A.; Vergara, R.; et al. Advanced in transparent planar optics: Enabling large aperture, ultrathin lenses. Adv. Opt. Mat. 2021, 9, 2001692. [Google Scholar] [CrossRef]
- Oh, C.; Escuti, M.J. Achromatic diffraction from polarization gratings with high efficiency. Opt. Lett. 2008, 33, 2287–2289. [Google Scholar] [CrossRef] [PubMed]
- Komanduri, R.K.; Lawler, K.F.; Escuti, M.J. Multi-twist retarders: Broadband retardation control using self-aligning reactive liquid crystal layers. Opt. Express 2013, 21, 404–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Li, Y.; Miskiewicz, M.N.; Oh, C.; Kudenov, M.W.; Escuti, M.J. Fabrication of ideal geometric-phase holograms with arbitrary wavefronts. Optica 2015, 2, 958–964. [Google Scholar] [CrossRef]
- Zhan, T.; Xiong, J.; Tan, G.; Wu, S.T. Absorption-based polarization gratings. Opt. Express 2020, 28, 13907–13912. [Google Scholar] [CrossRef] [PubMed]
- Zhan, T.; Xiong, J.; Lee, Y.H.; Chen, R.; Wu, S.T. Fabrication of Pancharatnam-Berry phase optical elements with highly stable polarization holography. Opt. Express 2019, 27, 2632–2642. [Google Scholar] [CrossRef] [Green Version]
- Saleh, B.E.; Teich, M.C. Fundamentals of Photonics, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 129–137. [Google Scholar]
- Chen, W.T.; Zhu, A.Y.; Sanjeev, V.; Khorasaninejad, M.; Shi, Z.; Lee, E.; Capasso, F. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 2018, 13, 220–226. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Wu, P.C.; Su, V.C.; Lai, Y.C.; Chen, M.K.; Kuo, H.Y.; Chen, B.H.; Chen, Y.H.; Huang, T.T.; Wang, J.H.; et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 2018, 13, 227–232. [Google Scholar] [CrossRef]
- Käläntär, K. A directional backlight with narrow angular luminance distribution for widening the viewing angle for an LCD with a front-surface light-scattering film. J. Soc. Inf. Disp. 2012, 20, 133–142. [Google Scholar] [CrossRef]
- Gao, Y.; Luo, Z.; Zhu, R.; Hong, Q.; Wu, S.T.; Li, M.C.; Lee, S.L.; Tsai, W.C. A high performance single-domain LCD with wide luminance distribution. J. Disp. Technol. 2015, 11, 315–324. [Google Scholar] [CrossRef]
- Chang, K.D.; Li, C.Y.; Pan, J.W.; Cheng, K.Y. A hybrid simulated method for analyzing the optical efficiency of a head-mounted display with a quasi-crystal OLED panel. Opt. Express 2014, 22, A567–A576. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Y.; Malhotra, Y.; Sun, Y.; Ra, Y.H.; Wang, R.; Stevenson, M.; Coe-Sullivan, S.; Mi, Z. Submicron full-color LED pixels for microdisplays and micro-LED main displays. J. Soc. Inf. Disp. 2020, 28, 410–417. [Google Scholar] [CrossRef]
- Khaidarov, E.; Liu, Z.; Paniagua-Domínguez, R.; Ha, S.T.; Valuckas, V.; Liang, X.; Akimov, Y.; Bai, P.; Png, C.E.; Demir, H.V.; et al. Control of LED emission with functional dielectric metasurfaces. Laser Photonics Rev. 2020, 14, 1900235. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, T.; Hsiang, E.-L.; Li, K.; Wu, S.-T. Enhancing the Optical Efficiency of Near-Eye Displays with Liquid Crystal Optics. Crystals 2021, 11, 107. https://doi.org/10.3390/cryst11020107
Zhan T, Hsiang E-L, Li K, Wu S-T. Enhancing the Optical Efficiency of Near-Eye Displays with Liquid Crystal Optics. Crystals. 2021; 11(2):107. https://doi.org/10.3390/cryst11020107
Chicago/Turabian StyleZhan, Tao, En-Lin Hsiang, Kun Li, and Shin-Tson Wu. 2021. "Enhancing the Optical Efficiency of Near-Eye Displays with Liquid Crystal Optics" Crystals 11, no. 2: 107. https://doi.org/10.3390/cryst11020107
APA StyleZhan, T., Hsiang, E. -L., Li, K., & Wu, S. -T. (2021). Enhancing the Optical Efficiency of Near-Eye Displays with Liquid Crystal Optics. Crystals, 11(2), 107. https://doi.org/10.3390/cryst11020107