Multifunctional Optical Crystals for All-Solid-State Raman Lasers
Abstract
:1. Introduction
2. The Classification of Multifunctional Raman Crystals
2.1. Self-Raman Crystals
2.1.1. Vanadate
2.1.2. Tungstate
2.1.3. Molybdate
2.1.4. Silicate
2.2. Self-Frequency-Doubled Raman Crystals
2.2.1. KTiOAsO4 (KTA) and KTiOPO4 (KTP)
2.2.2. BaTeMo2O9 (BTM)
3. Summary and Outlook
- Reducing the thermal lens effect of the self-Raman crystals by using gradient doping or diffusion-bonded crystal, in-band pumping technique, double-ended pumping structure, and improving the thermal management with chemical vapor deposition (CVD)-Diamond.
- Improving average power, conversion efficiency and beam quality by adopting various cavity arrangements instead of the simple straight cavity.
- Generating high power (tens of watts) 1.2 μm and 1.5 μm lasers for applications in remote sensing, tracking and ranging and directed energy; generating high brightness and high spectral power density lasers in the red-yellow region for spectroscopic applications, atom cooling and sodium guide stars.
- Narrowing the line width of the fundamental laser by using etalons or other methods, thereby improving Raman gain coefficient and Raman conversion efficiency; even a multi-watt single-longitudinal-mode self-Raman laser could be obtained based on the absence of spatial hole burning in the Raman medium.
- Ultrafast self-Raman lasers are a potential area for special wavelength development.
- Extending the wavelength range, such as generating deep-red lasers for applications in fluorescence imaging and photodynamic therapy; generating 1.7 μm lasers for applications in biological engineering, photoacoustic imaging, and welding high-density polymers and hydrocarbon-containing materials.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Woodbury, E.; Ng, W. Ruby laser operation in near IR. Proc. Inst. Radio Eng. 1962, 50, 2367. [Google Scholar]
- Demidovich, A.; Grabtchikov, A.; Lisinetskii, V.; Burakevich, V.; Orlovich, V.; Kiefer, W. Continuous-wave Raman generation in a diode-pumped Nd3+:KGd(WO4)2 laser. Opt. Lett. 2005, 30, 1701–1703. [Google Scholar] [CrossRef] [PubMed]
- Voronina, I.; Ivleva, L.; Basiev, T.; Zverev, P.; Polozkov, N. Active Raman media: SrWO4:Nd3+, BaWO4:Nd3+. Growth and Characterization. J. Optoelectron. Adv. Mater. 2003, 5, 887–892. [Google Scholar]
- Ivleva, L.; Basiev, T.; Voronina, I.; Zverev, P.; Osiko, V.; Polozkov, N. SrWO4:Nd3+–new material for multifunctional lasers. Opt. Mater. 2003, 23, 439–442. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Q.; Zhang, X.; Zhang, S.; Chang, J.; Fan, S.; Sun, W.; Jin, G.; Tao, X.; Sun, Y. Self-frequency-doubled KTiOAsO4 Raman laser emitting at 573 nm. Opt. Lett. 2009, 34, 2183–2185. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Liu, S.; Zhang, J.; Zhang, S.; Zhang, W.; He, J.; Tao, X. Self-frequency-doubled BaTeMo2O9 Raman laser emitting at 589 nm. Opt. Express 2013, 21, 7821–7827. [Google Scholar] [CrossRef] [PubMed]
- Andryunas, K.; Yishchakas, Y.; Kobelka, V.; Mochalov, I.; Pavlyuk, A.; Petrovskii, G.; Syrus, V. Self-SRS conversion of Nd3+ laser emission in crystals of double tungstates. Zh. Eksp. Teor. Fiz. Pis’ Ma Red. 1985, 42, 333–365. [Google Scholar]
- Kaminskii, A.; Eichler, H.; Grebe, D.; Macdonald, R.; Findeisen, J.; Bagayev, S.; Butashin, A.; Konstantinova, A.; Manaa, H.; Moncorge, R. Orthorhombic (LiNbGeO5): Efficient stimulated Raman scattering and tunable near-infrared laser emission from chromium doping. Opt. Mater. 1998, 10, 269–284. [Google Scholar] [CrossRef]
- Kaminskii, A.A.; Ueda, K.-i.; Eichler, H.E.; Findeisen, J.; Bagayev, S.N.; Kuznetsov, F.A.; Pavlyuk, A.A.; Boulon, G.; Bourgeois, F. Monoclinic Tungstates KDy(WO4)2 and KLu(WO4)2-New χ(3)-Active Crystals for Laser Raman Shifters. Jpn. J. Appl. Phys. 1998, 37, L923. [Google Scholar] [CrossRef]
- Kaminskii, A.A.; Bagayev, S.N.; Garsia, S.J.; Eichler, H.; Fernandez, J.; Jaque, D.; Findeisen, J.; Balda, R.; Agullo, R.F. First observations of stimulated emission and of stimulated Raman scattering in acentric cubic Nd3+:Bi12SiO20 crystals. Quantum Electron. 1999, 29, 6. [Google Scholar] [CrossRef]
- Lagatsky, A.; Abdolvand, A.; Kuleshov, N. Passive Q switching and self-frequency Raman conversion in a diode-pumped Yb:KGd(WO4)2 laser. Opt. Lett. 2000, 25, 616–618. [Google Scholar] [CrossRef]
- Findeisen, J.; Eichler, H.; Peuser, P. Self-stimulating, transversally diode pumped Nd3+:KGd(WO4)2 Raman laser. Opt. Commun. 2000, 181, 129–133. [Google Scholar] [CrossRef]
- Grabtchikov, A.; Kuzmin, A.; Lisinetskii, V.; Orlovich, V.; Demidovich, A.; Danailov, M.; Eichler, H.; Bednarkiewicz, A.; Strek, W.; Titov, A. Laser operation and Raman self-frequency conversion in Yb:KYW microchip laser. Appl. Phys. B 2002, 75, 795–797. [Google Scholar] [CrossRef]
- Kaminskii, A.A.; Ueda, K.-i.; Eichler, H.J.; Kuwano, Y.; Kouta, H.; Bagaev, S.N.; Chyba, T.H.; Barnes, J.C.; Gad, G.M.; Murai, T. Tetragonal vanadates YVO4 and GdVO4–new efficient χ(3)-materials for Raman lasers. Opt. Commun. 2001, 194, 201–206. [Google Scholar] [CrossRef]
- Chen, Y.-F. High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser: Influence of dopant concentration. Opt. Lett. 2004, 29, 1915–1917. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-F. Compact efficient all-solid-state eye-safe laser with self-frequency Raman conversion in a Nd:YVO4 crystal. Opt. Lett. 2004, 29, 2172–2174. [Google Scholar] [CrossRef]
- Kisel, V.; Troshin, A.; Tolstik, N.; Shcherbitsky, V.; Kuleshov, N.; Matrosov, V.; Matrosova, T.; Kupchenko, M. Q-switched Yb3+:YVO4 laser with Raman self-conversion. Appl. Phys. B 2005, 80, 471–473. [Google Scholar] [CrossRef]
- Chen, Y.-F. Efficient 1521-nm Nd:GdVO4 raman laser. Opt. Lett. 2004, 29, 2632–2634. [Google Scholar] [CrossRef]
- Su, F.; Zhang, X.; Wang, Q.; Jia, P.; Li, S.; Liu, B.; Zhang, X.; Cong, Z.; Wu, F. Theoretical and experimental study on a diode-pumped actively Q-switched Nd:GdVO4 self-stimulated Raman laser at 1173 nm. Opt. Commun. 2007, 277, 379–384. [Google Scholar] [CrossRef]
- Fan, L.; Zhao, W.; Qiao, X.; Xia, C.; Wang, L.; Fan, H.; Shen, M. An efficient continuous-wave YVO4/Nd:YVO4/YVO4 self-Raman laser pumped by a wavelength-locked 878.9 nm laser diode. Chin. Phys. B 2016, 25, 114207. [Google Scholar] [CrossRef]
- Chen, Y.-F.; Chen, K.; Liu, Y.; Chen, C.; Tsou, C.; Liang, H. Criterion for optimizing high-power acousto-optically Q-switched self-Raman yellow lasers with repetition rates up to 500 kHz. Opt. Lett. 2020, 45, 1922–1925. [Google Scholar] [CrossRef]
- Ding, S.; Zhang, X.; Wang, Q.; Su, F.; Jia, P.; Li, S.; Fan, S.; Chang, J.; Zhang, S.; Liu, Z. Theoretical and experimental study on the self-Raman laser with Nd:YVO4 crystal. IEEE J. Quantum Electron. 2006, 42, 927–933. [Google Scholar] [CrossRef]
- Piper, J.A.; Pask, H.M. Crystalline raman lasers. IEEE J. Sel. Top. Quantum Electron. 2007, 13, 692–704. [Google Scholar] [CrossRef]
- Chen, Y.-F. Efficient subnanosecond diode-pumped passively Q-switched Nd:YVO4 self-stimulated Raman laser. Opt. Lett. 2004, 29, 1251–1253. [Google Scholar] [CrossRef] [PubMed]
- Su, F.; Zhang, X.; Wang, Q.; Ding, S.; Jia, P.; Li, S.; Fan, S.; Zhang, C.; Liu, B. Diode pumped actively Q-switched Nd:YVO4 self-Raman laser. J. Phys. D Appl. Phys. 2006, 39, 2090. [Google Scholar] [CrossRef]
- Wang, B.; Tan, H.; Peng, J.; Miao, J.; Gao, L. Low threshold, actively Q-switched Nd3+:YVO4 self-Raman laser and frequency doubled 588 nm yellow laser. Opt. Commun. 2007, 271, 555–558. [Google Scholar] [CrossRef]
- Burakevich, V.; Lisinetskii, V.; Grabtchikov, A.; Demidovich, A.; Orlovich, V.; Matrosov, V. Diode-pumped continuous-wave Nd:YVO4 laser with self-frequency Raman conversion. Appl. Phys. B 2007, 86, 511–514. [Google Scholar] [CrossRef]
- Lee, A.; Pask, H.; Omatsu, T.; Dekker, P.; Piper, J. All-solid-state continuous-wave yellow laser based on intracavity frequency-doubled self-Raman laser action. Appl. Phys. B 2007, 88, 539–544. [Google Scholar] [CrossRef]
- Weitz, M.; Theobald, C.; Wallenstein, R.; L’huillier, J.A. Passively mode-locked picosecond Nd:YVO4 self-Raman laser. Appl. Phys. Lett. 2008, 92, 091122. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, X.; Wang, Q.; Li, P.; Cong, Z. Diode-pumped actively Q-switched c-cut Nd:YVO4 self-Raman laser. Laser Phys. Lett. 2008, 6, 26. [Google Scholar] [CrossRef]
- Chang, Y.; Su, K.-W.; Chang, H.; Chen, Y.-F. Compact efficient Q-switched eye-safe laser at 1525 nm with a double-end diffusion-bonded Nd:YVO4 crystal as a self-Raman medium. Opt. Express 2009, 17, 4330–4335. [Google Scholar] [CrossRef]
- Omatsu, T.; Lee, A.; Pask, H.; Piper, J. Passively Q-switched yellow laser formed by a self-Raman composite Nd:YVO4/YVO4 crystal. Appl. Phys. B 2009, 97, 799–804. [Google Scholar] [CrossRef]
- Zhu, H.; Duan, Y.; Zhang, G.; Huang, C.; Wei, Y.; Chen, W.; Huang, Y.; Ye, N. Yellow-light generation of 5.7 W by intracavity doubling self-Raman laser of YVO4/Nd:YVO4 composite. Opt. Lett. 2009, 34, 2763–2765. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Duan, Y.; Zhang, G.; Huang, C.; Wei, Y.; Shen, H.; Zheng, Y.; Huang, L.; Chen, Z. Efficient second harmonic generation of double-end diffusion-bonded Nd:YVO4 self-Raman laser producing 7.9 W yellow light. Opt. Express 2009, 17, 21544–21550. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Du, C.; Ruan, S.; Zhang, L. LD-pumped Q-switched Nd:YVO4 self-Raman laser. Laser Phys. 2010, 20, 474–477. [Google Scholar] [CrossRef]
- Kananovich, A.; Demidovich, A.; Danailov, M.; Grabtchikov, A.; Orlovich, V. All-solid-state quasi-CW yellow laser with intracavity self-Raman conversion and sum frequency generation. Laser Phys. Lett. 2010, 7, 573–578. [Google Scholar] [CrossRef]
- Du, C.L.; Zhang, L.; Yu, Y.Q.; Ruan, S.; Guo, Y. 3.1 W laser-diode-end-pumped composite Nd:YVO4 self-Raman laser at 1176 nm. Appl. Phys. B 2010, 101, 743–746. [Google Scholar] [CrossRef]
- Zhu, H.; Duan, Y.; Zhang, G.; Huang, C.; Wei, Y.; Chen, W.; Huang, L.; Huang, Y. Efficient continuous-wave YVO4/Nd:YVO4 Raman laser at 1176 nm. Appl. Phys. B 2011, 103, 559–562. [Google Scholar] [CrossRef]
- Lü, Y.; Cheng, W.; Xiong, Z.; Lu, J.; Xu, L.; Sun, G.; Zhao, Z. Efficient CW laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping. Laser Phys. Lett. 2010, 7, 787. [Google Scholar]
- Fan, L.; Fan, Y.-X.; Wang, H.-T. A compact efficient continuous-wave self-frequency Raman laser with a composite YVO4/Nd:YVO4/YVO4 crystal. Appl. Phys. B 2010, 101, 493–496. [Google Scholar] [CrossRef]
- Shuzhen, F.; Xingyu, Z.; Qingpu, W.; Zhaojun, L.; Lei, L.; Zhenhua, C.; Xiaohan, C.; Xiaolei, Z. 1097 nm Nd:YVO4 self-Raman laser. Opt. Commun. 2011, 284, 1642–1644. [Google Scholar] [CrossRef]
- Li, X.; Lee, A.J.; Pask, H.M.; Piper, J.A.; Huo, Y. Efficient, miniature, cw yellow source based on an intracavity frequency-doubled Nd:YVO4 self-Raman laser. Opt. Lett. 2011, 36, 1428–1430. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Zhu, H.; Huang, C.; Zhang, G.; Wei, Y. Potential sodium D2 resonance radiation generated by intra-cavity SHG of a c-cut Nd:YVO4 self-Raman laser. Opt. Express 2011, 19, 6333–6338. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Zhang, G.; Zhang, Y.; Jin, Q.; Wang, H.; Zhu, H. LD end-pumped c-Cut Nd:YVO4/KTP self-Raman laser at 560 nm. Laser Phys. 2011, 21, 1859–1862. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, X.; Wang, Q.; Li, P.; Liu, Z.; Cong, Z.; Li, L.; Zhang, H. Highly efficient double-ended diffusion-bonded Nd:YVO4 1525-nm eye-safe Raman laser under direct 880-nm pumping. Appl. Phys. B 2012, 106, 653–656. [Google Scholar] [CrossRef]
- Chen, W.; Wei, Y.; Huang, C.; Wang, X.; Shen, H.; Zhai, S.; Xu, S.; Li, B.; Chen, Z.; Zhang, G. Second-Stokes YVO4/Nd:YVO4/YVO4 self-frequency Raman laser. Opt. Lett. 2012, 37, 1968–1970. [Google Scholar] [CrossRef]
- Shen, H.; Wang, Q.; Zhang, X.; Liu, Z.; Bai, F.; Cong, Z.; Chen, X.; Wu, Z.; Wang, W.; Gao, L. Simultaneous dual-wavelength operation of Nd:YVO4 self-Raman laser at 1524 nm and undoped GdVO4 Raman laser at 1522 nm. Opt. Lett. 2012, 37, 4113–4115. [Google Scholar] [CrossRef]
- Ding, S.; Wang, M.; Wang, S.; Zhang, W. Investigation on LD end-pumped passively Q-switched c-cut Nd:YVO4 self-Raman laser. Opt. Express 2013, 21, 13052–13061. [Google Scholar] [CrossRef]
- Huang, G.; Yu, Y.; Xie, X.; Zhang, Y.; Du, C. Diode-pumped simultaneously Q-switched and mode-locked YVO4/Nd:YVO4/YVO4 crystal self-Raman first-Stokes laser. Opt. Express 2013, 21, 19723–19731. [Google Scholar] [CrossRef]
- Du, C.; Huang, G.; Yu, Y.; Xie, X.; Zhang, Y.; Wang, D. Q-switched mode-locking of second-Stokes pulses in a diode-pumped YVO4/Nd:YVO4/YVO4 self-Raman laser. Laser Phys. 2014, 24, 125003. [Google Scholar] [CrossRef]
- Ding, X.; Fan, C.; Sheng, Q.; Li, B.; Yu, X.; Zhang, G.; Sun, B.; Wu, L.; Zhang, H.; Liu, J. 5.2-W high-repetition-rate eye-safe laser at 1525 nm generated by Nd:YVO4–YVO4 stimulated Raman conversion. Opt. Express 2014, 22, 29111–29116. [Google Scholar] [CrossRef]
- Kores, C.C.; Jakutis-Neto, J.; Geskus, D.; Pask, H.M.; Wetter, N.U. Diode-side-pumped continuous wave Nd3+:YVO4 self-Raman laser at 1176 nm. Opt. Lett. 2015, 40, 3524–3527. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Huang, X.; Sun, D.; Liu, X. Passively Q-switched multi-wavelength Nd:YVO4 self-Raman laser. J. Mod. Opt. 2016, 63, 2235–2237. [Google Scholar] [CrossRef]
- Zhu, H.; Guo, J.; Ruan, X.; Xu, C.; Duan, Y.; Zhang, Y.; Tang, D. Cascaded self-Raman laser emitting around 1.2–1.3 μm based on a c-cut Nd:YVO4 crystal. IEEE Photonics J. 2017, 9, 1–7. [Google Scholar]
- Zhu, H.; Guo, J.; Duan, Y.; Zhang, J.; Zhang, Y.; Xu, C.; Wang, H.; Fan, D. Efficient 1.7 μm light source based on KTA-OPO derived by Nd:YVO4 self-Raman laser. Opt. Lett. 2018, 43, 345–348. [Google Scholar] [CrossRef]
- Bai, F.; Jiao, Z.; Xu, X.; Wang, Q. High power Stokes generation based on a secondary Raman shift of 259 cm−1 of Nd:YVO4 self-Raman crystal. Opt. Laser Technol. 2019, 109, 55–60. [Google Scholar] [CrossRef]
- Chen, M.; Dai, S.; Zhu, S.; Yin, H.; Li, Z.; Chen, Z. Multi-watt passively Q-switched self-Raman laser based on a c-cut Nd:YVO4 composite crystal. Josa B 2019, 36, 524–532. [Google Scholar] [CrossRef]
- Chen, Y.; Pan, Y.; Liu, Y.; Cheng, H.; Tsou, C.; Liang, H. Efficient high-power continuous-wave lasers at green-lime-yellow wavelengths by using a Nd:YVO4 self-Raman crystal. Opt. Express 2019, 27, 2029–2035. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Gu, D.; Pan, Y.; Cheng, H.; Tsou, C.; Liang, H. High-power dual-color yellow–green solid-state self-Raman laser. Laser Phys. 2019, 29, 075802. [Google Scholar] [CrossRef]
- Fan, L.; Zhao, X.-D.; Zhang, Y.-C.; Gu, X.-D.; Wan, H.-P.; Fan, H.-B.; Zhu, J. Multi-wavelength continuous-wave Nd:YVO4 self-Raman laser under in-band pumping. Chin. Phys. B 2019, 28, 084210. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, C.; Hsiao, J.; Pan, Y.; Tsou, C.; Liang, H.; Chen, Y. Compact efficient high-power triple-color Nd:YVO4 yellow-lime-green self-Raman lasers. Opt. Lett. 2020, 45, 1144–1147. [Google Scholar] [CrossRef]
- Liu, P.; Qi, F.; Li, W.; Liu, Z.; Wang, Y.; Ding, X.; Yao, J. Self-Raman Nd-doped vanadate laser: A pump source of organic crystal based difference frequency generation. J. Mod. Opt. 2020, 67, 914–919. [Google Scholar] [CrossRef]
- Chen, M.; Dai, S.; Yin, H.; Zhu, S.; Li, Z.; Chen, Z. Passively Q-switched yellow laser at 589 nm by intracavity frequency-doubled c-cut composite Nd:YVO4 self-Raman laser. Optics Laser Technol. 2021, 133, 106534. [Google Scholar] [CrossRef]
- Chen, Y.-F. Compact efficient self-frequency Raman conversion in diode-pumped passively Q-switched Nd:GdVO4 laser. Appl. Phys. B 2004, 78, 685–687. [Google Scholar] [CrossRef]
- Basiev, T.; Vassiliev, S.; Konjushkin, V.; Osiko, V.; Zagumennyi, A.; Zavartsev, Y.; Kutovoi, S.; Shcherbakov, I. Diode pumped 500-picosecond Nd:GdVO4 Raman laser. Laser Phys. Lett. 2004, 1, 237. [Google Scholar] [CrossRef]
- Baoshan, W.; Huiming, T.; Jiying, P.; Jieguang, M.; Lanlan, G. Low threshold, diode end-pumped Nd3+:GdVO4 self-Raman laser. Opt. Mater. 2007, 29, 1817–1820. [Google Scholar] [CrossRef]
- Dekker, P.; Pask, H.M.; Spence, D.J.; Piper, J.A. Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4 at 586.5 nm. Opt. Express 2007, 15, 7038–7046. [Google Scholar] [CrossRef]
- Lee, A.; Pask, H.M.; Dekker, P.; Piper, J. High efficiency, multi-Watt CW yellow emission from an intracavity-doubled self-Raman laser using Nd:GdVO4. Opt. Express 2008, 16, 21958–21963. [Google Scholar] [CrossRef]
- Lee, A.J.; Pask, H.M.; Spence, D.J.; Piper, J.A. Efficient 5.3 W cw laser at 559 nm by intracavity frequency summation of fundamental and first-Stokes wavelengths in a self-Raman Nd:GdVO4 laser. Opt. Lett. 2010, 35, 682–684. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.J.; Lin, J.; Pask, H.M. Near-infrared and orange–red emission from a continuous-wave, second-Stokes self-Raman Nd:GdVO4 laser. Opt. Lett. 2010, 35, 3000–3002. [Google Scholar] [CrossRef]
- Lee, A.J.; Spence, D.J.; Piper, J.A.; Pask, H.M. A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible. Opt. Express 2010, 18, 20013–20018. [Google Scholar] [CrossRef]
- Omatsu, T.; Okida, M.; Lee, A.; Pask, H. Thermal lensing in a diode-end-pumped continuous-wave self-Raman Nd-doped GdVO4 laser. Appl. Phys. B 2012, 108, 73–79. [Google Scholar] [CrossRef]
- Lin, J.; Pask, H.M. Cascaded self-Raman lasers based on 382 cm−1 shift in Nd:GdVO4. Opt. Express 2012, 20, 15180–15185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.; Pask, H. Nd:GdVO4 self-Raman laser using double-end polarised pumping at 880 nm for high power infrared and visible output. Appl. Phys. B 2012, 108, 17–24. [Google Scholar] [CrossRef]
- Wang, M.; Ding, S.; Yu, W.; Zhang, W. High-efficient diode-pumped passively Q-switched c-cut Nd:GdVO4 self-Raman laser. Laser Phys. Lett. 2013, 10, 045403. [Google Scholar] [CrossRef]
- Lee, A.J.; Omatsu, T.; Pask, H.M. Direct generation of a first-Stokes vortex laser beam from a self-Raman laser. Opt. Express 2013, 21, 12401–12409. [Google Scholar] [CrossRef]
- Lee, A.J.; Zhang, C.; Omatsu, T.; Pask, H.M. An intracavity, frequency-doubled self-Raman vortex laser. Opt. Express 2014, 22, 5400–5409. [Google Scholar] [CrossRef]
- Ma, Y.; Lee, A.J.; Pask, H.M.; Miyamoto, K.; Omatsu, T. Direct generation of 1108 nm and 1173 nm Laguerre-Gaussian modes from a self-Raman Nd:GdVO4 laser. Opt. Express 2020, 28, 24095–24103. [Google Scholar] [CrossRef]
- Kaminskii, A.; Bettinelli, M.; Dong, J.; Jaque, D.; Ueda, K. Nanosecond Nd3+:LuVO4 self-Raman laser. Laser Phys. Lett. 2009, 6, 374. [Google Scholar] [CrossRef]
- Lü, Y.; Zhang, X.; Li, S.; Xia, J.; Cheng, W.; Xiong, Z. All-solid-state cw sodium D2 resonance radiation based on intracavity frequency-doubled self-Raman laser operation in double-end diffusion-bonded Nd3+:LuVO4 crystal. Opt. Lett. 2010, 35, 2964–2966. [Google Scholar] [CrossRef]
- Li, R.; Bauer, R.; Lubeigt, W. Continuous-Wave Nd:YVO4 self-Raman lasers operating at 1109 nm, 1158 nm and 1231 nm. Opt. Express 2013, 21, 17745–17750. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Zhang, H.J.; Meng, X.L. Growth and Laser Properties of Nd:GdVO4 Crystal at 1064 nm. J. Synth. Cryst. 1999, 28, 3. [Google Scholar]
- Maunier, C.; Doualan, J.; Moncorgé, R.; Speghini, A.; Bettinelli, M.; Cavalli, E. Growth, spectroscopic characterization, and laser performance of Nd:LuVO4 a new infrared laser material that is suitable for diode pumping. Josa B 2002, 19, 1794–1800. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, H.; Wang, J.; Kong, H.; Cheng, X.; Liu, J.; Li, J.; Lin, Y.; Hu, X.; Xu, X. Growth and characterization of the new laser crystal Nd:LuVO4. Opt. Mater. 2004, 26, 319–325. [Google Scholar] [CrossRef]
- Andriunas, K.; Vishchakas, I.; Kabelka, V.; Mochalov, I.; Pavliuk, A. Stimulated-Raman self-conversion of Nd3+ laser light in double tungstenate crystals. ZhETF Pisma Redaktsiiu 1985, 42, 333–335. [Google Scholar]
- Grabtchikov, A.; Kuzmin, A.; Lisinetskii, V.; Orlovich, V.; Ryabtsev, G.; Demidovich, A. All solid-state diode-pumped Raman laser with self-frequency conversion. Appl. Phys. Lett. 1999, 75, 3742–3744. [Google Scholar] [CrossRef]
- Grabtchikov, A.; Kuzmin, A.; Lisinetskii, V.; Ryabtsev, G.; Orlovich, V.; Demidovich, A. Stimulated Raman scattering in Nd:KGW laser with diode pumping. J. Alloy. Compd. 2000, 300, 300–302. [Google Scholar] [CrossRef]
- Ustimenko, N.S.; Gulin, A.V. New self-frequency converted Nd3+:KGd (WO4)2 Raman lasers. Quantum Electron. 2002, 32, 229. [Google Scholar] [CrossRef]
- Omatsu, T.; Ojima, Y.; Pask, H.M.; Piper, J.A.; Dekker, P. Efficient 1181 nm self-stimulating Raman output from transversely diode-pumped Nd3+:KGd(WO4)2 laser. Opt. Commun. 2004, 232, 327–331. [Google Scholar] [CrossRef]
- Hamano, A.; Pleasants, S.; Okida, M.; Itoh, M.; Yatagai, T.; Watanabe, T.; Fujii, M.; Iketaki, Y.; Yamamoto, K.; Omatsu, T. Highly efficient 1181 nm output from a transversely diode-pumped Nd3+:KGd(WO4)2 self-stimulating Raman laser. Opt. Commun. 2006, 260, 675–679. [Google Scholar] [CrossRef]
- Jianhong, H.; Jipeng, L.; Rongbing, S.; Jinghui, L.; Hui, Z.; Canhua, X.; Fei, S.; Zongzhi, L.; Jian, Z.; Wenrong, Z. Short pulse eye-safe laser with a stimulated Raman scattering self-conversion based on a Nd:KGW crystal. Opt. Lett. 2007, 32, 1096–1098. [Google Scholar] [CrossRef]
- Lisinetskii, V.; Grabtchikov, A.; Demidovich, A.; Burakevich, V.; Orlovich, V.; Titov, A. Nd:KGW/KGW crystal: Efficient medium for continuous-wave intracavity Raman generation. Appl. Phys. B 2007, 88, 499–501. [Google Scholar] [CrossRef]
- Chunaev, D.; Basiev, T.; Konushkin, V.; Papashvili, A.; Karasik, A.Y. Synchronously pumped intracavity YLF–Nd–KGW picosecond Raman lasers and LiF:F–2 amplifiers. Laser Phys. Lett. 2008, 5, 589–592. [Google Scholar] [CrossRef]
- Tang, C.-Y.; Zhuang, W.-Z.; Su, K.-W.; Chen, Y.-F. Efficient continuous-wave self-Raman Nd:KGW laser with intracavity cascade emission based on shift of 89 cm−1. IEEE J. Sel. Top. Quantum Electron. 2014, 21, 142–147. [Google Scholar] [CrossRef]
- Kisel, V.; Shcherbitsky, V.; Kuleshov, N. Efficient self-frequency Raman conversion in a passively Q-switched diode-pumped Yb:KGd(WO4)2 laser. In Proceedings of the Advanced Solid-State Photonics, San Antonio, TX, USA, 2–5 February 2003; p. 189. [Google Scholar]
- Chang, M.; Zhuang, W.; Su, K.-W.; Yu, Y.; Chen, Y.-F. Efficient continuous-wave self-Raman Yb:KGW laser with a shift of 89 cm−1. Opt. Express 2013, 21, 24590–24598. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, M.S.; Wetter, N.U. Yb:KGW self-Raman laser with 89 cm−1 Stokes shift and more than 32% diode-to-Stokes optical efficiency. Opt. Laser Technol. 2020, 121, 105835. [Google Scholar] [CrossRef]
- Chen, W.; Inagawa, Y.; Omatsu, T.; Tateda, M.; Takeuchi, N.; Usuki, Y. Diode-pumped, self-stimulating, passively Q-switched Nd3+:PbWO4 Raman laser. Opt. Commun. 2001, 194, 401–407. [Google Scholar] [CrossRef]
- Šulc, J.; Jelı, H.; Basiev, T.; Doroschenko, M.; Ivleva, L.; Osiko, V.; Zverev, P. Nd:SrWO4 and Nd:BaWO4 Raman lasers. Opt. Mater. 2007, 30, 195–197. [Google Scholar] [CrossRef]
- Jelinkova, H.; Šulc, J.; Basiev, T.; Zverev, P.; Kravtsov, S. Stimulated Raman scattering in Nd:SrWO4. Laser Phys. Lett. 2004, 2, 4. [Google Scholar] [CrossRef]
- Liu, J.; Griebner, U.; Petrov, V.; Zhang, H.; Zhang, J.; Wang, J. Efficient continuous-wave and Q-switched operation of a diode-pumped Yb:KLu(WO4)2 laser with self-Raman conversion. Opt. Lett. 2005, 30, 2427–2429. [Google Scholar] [CrossRef]
- Cong, Z.; Liu, Z.; Qin, Z.; Zhang, X.; Zhang, H.; Li, J.; Yu, H.; Wang, W. LD-pumped actively Q-switched Nd:KLu(WO4)2 self-Raman laser at 1185 nm. Opt. Laser Technol. 2015, 73, 50–53. [Google Scholar] [CrossRef]
- Kaminskii, A.A.; Eichler, H.J.; Ueda, K.-i.; Klassen, N.V.; Redkin, B.S.; Li, L.E.; Findeisen, J.; Jaque, D.; Garcia-Sole, J.; Fernández, J. Properties of Nd3+-doped and undoped tetragonal PbWO4, NaY(WO4)2, CaWO4, and undoped monoclinic ZnWO4 and CdWO4 as laser-active and stimulated Raman scattering-active crystals. Appl. Opt. 1999, 38, 4533–4547. [Google Scholar] [CrossRef] [PubMed]
- Major, A.; Cisek, R.; Barzda, V. Development of diode-pumped high average power continuous-wave and ultrashort pulse Yb:KGW lasers for nonlinear microscopy. In Proceedings of the Commercial and Biomedical Applications of Ultrafast Lasers VI, San Jose, CA, USA, 22–25 January 2006; p. 61080Y. [Google Scholar]
- Mateos, X.; Petrov, V.; Aguilo, M.; Sole, R.M.; Gavaldà, J.; Massons, J.; Diaz, F.; Griebner, U. Continuous-wave laser oscillation of Yb3+ in monoclinic KL–u(WO4)2. IEEE J. Quantum Electron. 2004, 40, 1056–1059. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Zhang, H.; Xu, F.; Wang, Z.; Shao, Z.; Zhao, H.; Wang, Y. Growth and diode-pumped CW lasing of Nd:KLu(WO4)2. J. Cryst. Growth 2005, 284, 108–111. [Google Scholar] [CrossRef]
- Basiev, T.; Sobol, A.; Voronko, Y.K.; Zverev, P. Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers. Opt. Mater. 2000, 15, 205–216. [Google Scholar] [CrossRef]
- Basiev, T.T.; Vassiliev, S.V.; Doroshenko, M.E.; Osiko, V.V.; Puzikov, V.M.; Kosmyna, M.B. Laser and self-Raman-laser oscillations of PbMoO4:Nd3+ crystal under laser diode pumping. Opt. Lett. 2006, 31, 65–67. [Google Scholar] [CrossRef]
- Basiev, T.; Doroshenko, M.; Ivleva, L.; Voronina, I.; Konjushkin, V.; Osiko, V.; Vasilyev, S. Demonstration of high self-Raman laser performance of a diode-pumpedSrMoO4:Nd3+ crystal. Opt. Lett. 2009, 34, 1102–1104. [Google Scholar] [CrossRef]
- Kaminskii, A.; Bagayev, S.; Ueda, K.; Dong, J.a.; Eichler, H. New passively Q-switched LD-pumped self-Raman laser with single-step cascade SE→SRS wavelength conversion on the base of monoclinic Nd3+:Y2SiO5 crystal. Laser Phys. Lett. 2010, 7, 270. [Google Scholar] [CrossRef]
- Bosenberg, W.; Cheng, L.; Bierlein, J. Optical parametric frequency conversion properties of KTiOAsO4. Appl. Phys. Lett. 1994, 65, 2765–2767. [Google Scholar] [CrossRef]
- Edwards, T.; Turnbull, G.; Dunn, M.; Ebrahimzadeh, M.; Colville, F. High-power, continuous-wave, singly resonant, intracavity optical parametric oscillator. Appl. Phys. Lett. 1998, 72, 1527–1529. [Google Scholar] [CrossRef]
- Tu, C.S.; Guo, A.; Tao, R.; Katiyar, R.; Guo, R.; Bhalla, A. Temperature dependent Raman scattering in KTiOPO4 and KTiOAsO4 single crystals. J. Appl. Phys. 1996, 79, 3235–3240. [Google Scholar] [CrossRef]
- Chen, Y.-F. Stimulated Raman scattering in a potassium titanyl phosphate crystal: Simultaneous self-sum frequency mixing and self-frequency doubling. Opt. Lett. 2005, 30, 400–402. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Tao, X.; Zhang, C.; Gao, Z.; Zhang, Y.; Yu, W.; Cheng, X.; Liu, X.; Jiang, M. Bulk growth and characterization of a novel nonlinear optical crystal BaTeMo2O9. Cryst. Growth Des. 2008, 8, 304–307. [Google Scholar] [CrossRef]
- Yu, Q.; Gao, Z.; Zhang, S.; Zhang, W.; Wang, S.; Tao, X. Second order nonlinear properties of monoclinic single crystal BaTeMo2O9. J. Appl. Phys. 2012, 111, 013506. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Space group | Tetragonal |
Lattice constants (nm) | a = b = 0.7123, c = 0.6292 |
Fluorescence lifetime (μs) | 100 |
Refractive indices (300 K) | no = 1.96, ne = 2.17 |
Thermal conductivity (W/mK) | 5.10 {a}, 5.23 {c} |
Thermo-optic coefficients (dn/dT 10−7 K−1) | 15.2 {a}, 7.9 {c} |
Raman shift (cm−1) | 890 |
Raman line width (cm−1) | 3.0 |
Raman gain coefficients at 1.06 μm (cm/GW) | 4.5 [37]; 5 [46] |
Emission cross-section σem at 1.06 μm (10−19 cm2) | 25 {∥c}, 6.5 {⊥c} |
Thermal expansion coefficients (10−6 K−1) | 4.43 {a}, 11.37 {c} |
Years | Pump Power | CNd | CW /Pulse | Output Wavelength (nm) | Stokes Component | Output Power (W) | Efficiency | Refs. |
---|---|---|---|---|---|---|---|---|
2004 | 2.0 W@808 nm | 0.5% | PQS | 1178.6 | 1st Stokes | 0.125 | 6.3% | [24] |
2004 | 10.8 W@808 nm | 0.2% | AQS | 1176 | 1st Stokes | 1.5 | 13.9% | [15] |
2004 | 13.5 W@808 nm | 0.2% | AQS | 1525 | 1st Stokes | 1.2 | 8.9% | [16] |
2006 | 10.2 W@808 nm | 0.2% | AQS | 1176 | 1st Stokes | 0.57 | 5.6% | [25] |
2006 | 1.8 W@808 nm | 0.5% | AQS | 1176 | 1st Stokes | 0.182 | 10% | [26] |
2006 | 2.5 [email protected] nm | 0.8% | CW | 1177 | 1st Stokes | 0.05 | 2% | [27] |
2006 | 809 nm | 0.2% | AQS | 1176 | 1st Stokes | --- | --- | [22] |
2007 | 3.2 W@810 nm | 0.3% | CW | 1176→588 | 1st Stokes | 0.14 | 4.4% | [28] |
2008 | 809 nm | --- | PML | 1176 | 1st Stokes | 0.42 | --- | [29] |
2008 | 7.7 W@808 nm | 0.5% | AQS | 1178 | 1st Stokes | 1.4 | 18.2% | [30] |
2009 | 17.2 W@808 nm | 0.3% | AQS | 1525 | 1st Stokes | 2.23 | 13% | [31] |
2009 | 4.4 W@808 nm | 0.3% | PQS | 1176→588 | 1st Stokes | 0.26 | 5.9% | [32] |
2009 | 23.6 W@808 nm | 0.3% | AQS | 1176→588 | 1st Stokes | 5.7 | 24.2% | [33] |
2009 | 26.3 W@808 nm | 0.3% | AQS | 1176→588 | 1st Stokes | 7.9 | 30% | [34] |
2009 | 18.0 W@808 nm | 0.3% | AQS | 1173.6 | 1st Stokes | 2.21 | 12.28% | [35] |
2010 | 22.4 W@808 nm | 0.4% | QCW | 1176 + 1064→559 | 1st Stokes | 0.47 | 2.1% | [36] |
2010 | 25.0 W@808 nm | 0.3% | AQS | 1176 | 1st Stokes | 3.1 | 12.4% | [37] |
2010 | 23.6 W@808 nm | 0.3% | CW | 1176 | 1st Stokes | 1.84 | 7.8% | [38] |
2010 | 18.2 W@880 nm | 0.3% | CW | 1176 + 1064→559 | 1st Stokes | 0.89 | 4.9% | [39] |
2010 | 25.5 W@808 nm | 0.27% | CW | 1175 | 1st Stokes | 2.8 | 11% | [40] |
2010 | 12.4 W@880 nm | 0.5% | AQS | 1097 | 1st Stokes | 1.45 | 11.7% | [41] |
2011 | 3.8 W@808 nm | 1% | CW | 1176→587.8 | 1st Stokes | 0.22 | 5.8% | [42] |
2011 | 16.2 W@808 nm | 0.3% | AQS | 1178→589 | 1st Stokes | 2.15 | 13.3% | [43] |
2011 | 14.0 W@808 nm | 0.3% | AQS | 1178 + 1066→560 | 1st Stokes | 0.84 | 6% | [44] |
2011 | 10.2 W@880 nm | 0.3% | AQS | 1525 | 1st Stokes | 1.95 | 19.2% | [45] |
2012 | 14.6 W@808 nm | 0.3% | AQS | 1313 | 2nd Stokes | 2.34 | 16% | [46] |
2012 | 14.4 W@808 nm | 0.3% | AQS | 1524 | 1st Stokes | 1.08 | 7.5% | [47] |
2013 | 7.9 W@808 nm | 0.3% | PQS | 1178 | 1st Stokes | 0.8 | 10.1% | [48] |
2013 | 30.0 W@808 nm | 0.3% | AQS + ML | 1176 | 1st Stokes | 1.83 | 6.1% | [49] |
2014 | 30.0 W@808 nm | 0.3% | AQS + ML | 1313.4 | 2nd Stokes | 1.33 | 4.43% | [50] |
2014 | 30.6 W@880 nm | 0.3% | AQS | 1525 | 1st Stokes | 5.2 | 17% | [51] |
2015 | 33.3 W@880 nm | 1.1% | CW | 1176 | 1st Stokes | 1.8 | 5.4% | [52] |
2016 | 5.0 W@808 nm | 0.27% | PQS | 1066.8 1097.2 1129.2 1168.3 1178.8 | 1st Stokes/ 2nd Stokes | 0.267 | 5.3% | [53] |
2016 | 26.5 W@879 nm | 0.3% | CW | 1176 | 1st Stokes | 5.3 | 20% | [20] |
2017 | 17.0 W@808 nm | 0.3% | AQS | 1215 1255 1316 | 1st Stokes/ 2nd Stokes | 1.02 | 6% | [54] |
2018 | 12.0 W@808 nm | 0.3% | AQS | 1176 | 1st Stokes | 1.2 | 10% | [55] |
2018 | 8.1 W@808 nm | 0.5% | PQS | 1097 | 1st Stokes | 0.75 | 9.3% | [56] |
2019 | 20.6 W@880 nm | 0.4% | PQS | 1178 | 1st Stokes | 2.53 | 12.3% | [57] |
2019 | 31.6 W@808 nm | 0.3% | CW | 1064→532 1176+1064→559 1176→588 | 1st Stokes | 6.8 5.4 3.1 | 9.8% | [58] |
2019 | 63.0 W@808 nm | 0.3% | CW | 1064→532 1176→588 | 1st Stokes | 8 | 12.7% | [59] |
2019 | 26.1 W@879 nm | 0.3% | CW | 1168.4/1176/ 1178.7/1201.6 | 1st Stokes | 2.56 | 9.8% | [60] |
2020 | 10.0 W@808 nm | 0.3% | CW | 1064→532 1176 + 1064→559 1176→588 | 1st Stokes | 2.4 | 24% | [61] |
2020 | 25.9 W@808 nm | 0.2% | AQS | 1176→588 | 1st Stokes | 8.8 | 34% | [21] |
2020 | 878.6 nm | 0.3% | AQS | 1525 | 1st Stokes | --- | --- | [62] |
2020 | 17.4 W@808 nm | 0.4% | PQS | 1178→589 | 1st Stokes | 0.66 | 3.8% | [63] |
Parameters | Value |
---|---|
Space group | Tetragonal |
Lattice constants (nm) | a = b = 0.7211, c = 0.6350 |
Fluorescence lifetime (μs) | 95 |
Refractive indices (300k) | no = 1.97, ne = 2.19 |
Thermal conductivity (W/mK) | 10.1 {a}, 11.7 {c} |
Thermo-optic coefficients (dn/dT 10−6K−1) | 13.8 {a}, 10.1 {c} |
Raman shift (cm−1) | 882 |
Raman line width (cm−1) | 3.5 |
Raman gain coefficient at 1.06 μm (cm/GW) | 4.5 |
Emission cross-section σem at 1.06 μm (10−19cm2) | 7.6 {∥c}, 1.2 {⊥c} |
Thermal expansion coefficients (10−6 K−1) | 1.5 {a}, 7.3 {c} |
Years | Pump Power | C Nd | CW /Pulse | Output Wavelength (nm) | Stokes Component | Output Power (W) | Efficiency | Refs. |
---|---|---|---|---|---|---|---|---|
2004 | 2.0 W@808 nm | 0.5% | PQS | 1175.6 | 1st Stokes | 0.14 | 7% | [64] |
2004 | 4.0 W@808 nm | 0.5% | PQS | 1174 | 1st Stokes | 0.08 | 2% | [65] |
2004 | 13.6 W@808 nm | 0.27% | AQS | 1521 | 1st Stokes | 1.18 | 8.7% | [18] |
2006 | 1.3 W@808 nm | 0.5% | AQS | 1176 | 1st Stokes | 0.1 | 8% | [66] |
2007 | 9.6 W@808 nm | 0.2% | AQS | 1173 | 1st Stokes | 1.22 | 12.7% | [19] |
2007 | 16.1 W@808 nm | 0.3% | CW | 1173 | 1st Stokes | 2 | 12.4% | [67] |
2008 | 20.6 W@880 nm | 0.3% | CW | 1173→586.5 | 1st Stokes | 2.51 | 12.2% | [68] |
2010 | 25.2 W@880 nm | 0.3% | CW | 1173 + 1063→559 | 1st Stokes | 5.3 | 21% | [69] |
2010 | 14.0 W@879 nm | 0.3% | CW | 1308 | 2nd Stokes | 0.95 | 6.8% | [70] |
2010 | 25.1 W@879 nm | 0.3% | CW | 1173→586 | 1st Stokes | 4.3 | 17.1% | [71] |
2012 | 808/879 nm | 0.3% | CW | 1173 | 1st Stokes | 0.64 | 3.7% | [72] |
2012 | 29.0 W@880 nm | 0.3% | CW | 1108 + 1063→542 1108→554 1156 + 1108→566 1156→577 | 1st Stokes/ 2nd Stokes | 3.4 2.8 1.4 0.8 | 11.7% 9.7% 4.8% 2.7% | [73] |
2012 | 36.2 W@880 nm | 0.3% | CW | 1173 | 1st Stokes | 4.1 | 11.2% | [74] |
2013 | 5.0 W@808 nm | 0.5% | PQS | 1176 | 1st Stokes | 0.52 | 10.3% | [75] |
2013 | 6.8 W@879 nm | 0.3% | CW | 1173 | 1st Stokes | 0.38 | 5.6% | [76] |
2014 | 18.3 W@879 nm | 0.3% | CW | 1173→586 | 1st Stokes | 0.73 | 4% | [77] |
2020 | 5.6 W@879 nm | 0.3% | CW | 1108 1173 | 1st Stokes | 0.05 0.13 | 0.9% 2.3% | [78] |
Years | Pump power | Crystal | CW /Pulse | Output Wavelength (nm) | Stokes Component | Output Power (W) | Efficiency | Refs. |
---|---|---|---|---|---|---|---|---|
2005 | 2.1 W@980 nm | Yb: YVO4 | CW and PQS | 1023 (CW) 1018 (PQS) 1119.5 (PQS) | 1st Stokes | 1 0.46 0.09 | 4.2% | [17] |
2009 | 2.4 W@808 nm | Nd: LuVO4 | PQS | 1178.8 | 1st Stokes | 0.12 | 5% | [79] |
2010 | 26.3 W@880 nm | Nd: LuVO4 | CW | 1178→589 | 1st Stokes | 3.5 | 13.3% | [80] |
Parameters | Value |
---|---|
Space group | Monoclinic |
Lattice constants (nm) | a = 0.8098, b = 1.0417, c = 0.7583, β = 94.43° |
Fluorescence lifetime (μs) | 110 |
Refractive indices (300 K) | ng = 2.003, nm = 1.986, np = 1.937 |
Thermal conductivity (W/mK) | 2.6 {1 0 0}, 3.8 {0 1 0}, 3.4 {0 0 1} |
Thermo-optic coefficients (dn/dT 10−7K−1) | −8 {K‖p, E‖m}, −55 {K‖p, E‖g} |
Raman shift (cm −1) | 767, 901 |
Raman line width (cm −1) | 5.4 {767}, 5.4 {901} |
Raman gain coefficient (cm/GW) | 4.4 {767}, 3.3 {901} |
Emission cross-section σem (10−19cm2) @1μm | 4.3 |
Thermal expansion coefficients (10−6K−1) | 4.0 {1 0 0}, 1.6 {0 1 0}, 8.5 {0 0 1} |
Years | Pump Power/Energy | C Nd | CW /Pulse | Output Wavelength (nm) | Stokes Component | Output Power/ Energy | Efficiency | Refs. |
---|---|---|---|---|---|---|---|---|
1985 | 0.18 J | 3% | pulse | 1182.7 | 1st Stokes | 11 mJ | 6.14% | [85] |
1999 | 806–812 nm | 4% | PQS | 1181 | 1st Stokes | 4.8 mW | 0.7% | [86] |
2000 | 808 nm | 1% | AQS | 1162 | 1st Stokes | 0.1 mJ | --- | [12] |
2000 | 806–812 nm | 4% | PQS | 1181 | 1st Stokes | 8.9 mW | --- | [87] |
2002 | 8.0 J | --- | AQS | 1538 | 1st Stokes | 20 mJ | 0.3% | [88] |
2003 | 12.6 J@809 nm | 5% | AQS | 1181 | 1st Stokes | 340 mJ | 2.7% | [89] |
2005 | 2.1 [email protected] nm | 3% | CW | 1181 | 1st Stokes | 54 mW | 2.6% | [2] |
2005 | 5.7 W@808 nm | 5% | AQS | 1181 | 1st Stokes | 0.8 W | 14% | [90] |
2007 | 1.22 J | 1.5, 2, 3, 5% | AQS | 1538 | 1st Stokes | 31.8 mJ | 2.6% | [91] |
2007 | 1.3 W@808 nm | 4% | CW | 1181 | 1st Stokes | 0.277 W | 22% | [92] |
2008 | 0.18 mJ | --- | ML | 1180 | 1st Stokes | 0.06 mJ | 33% | [93] |
2014 | 2.5 W@808 nm | 5% | CW | 1077.9 | 1st Stokes | 0.42 W | 16.8% | [94] |
Years | Pump Power/Energy | Crystal | CW /Pulse | Output Wavelength (nm) | Stokes Component | Output Power/ Energy | Efficiency | Refs. |
---|---|---|---|---|---|---|---|---|
1999 | 980 nm | Yb:KGW | PQS | 1139 | 1st Stokes | 7 mW | --- | [11] |
2001 | 2.5 mJ@802 nm | Nd:PWO | PQS | 1170 | 1st Stokes | 2.5 μJ | 0.1% | [98] |
2002 | 980 nm | Yb:KYW | CW | 1130 | 1st Stokes | --- | 10% | [13] |
2003 | 0.3 W@984 nm | Yb:KGW | PQS | 1145 | 1st Stokes | 0.11 W | 40% | [95] |
2004 | 24.1 mJ@752 nm | Nd:SrWO4 | PQS | 1170 | 1st Stokes | 1.3 mJ | 5.4% | [100] |
2005 | 7.0 W@978 nm | Yb:KLuW | PQS | 1137.6 | 1st Stokes | 0.4 W | 5.7% | [101] |
2006 | 752 nm | Nd:BaWO4 Nd:SrWO4 | PQS | 1169 | 1st Stokes | 1.23 mJ | --- | [99] |
2013 | 7.8 W@980 nm | Yb:KGW | CW | 1110.5 | 1st Stokes | 1.7 W | 21.8% | [96] |
2015 | 15.3 W@808 nm | Nd:KLuW | AQS | 1186 | 1st Stokes | 1.5 W | 9.8% | [102] |
2019 | 14.1 W@940 nm | Yb:KGW | QCW | 1096 | 1st Stokes | 4.5 W | 32% | [97] |
Parameters | Value |
---|---|
Space group | Monoclinic |
Lattice constants (nm) | a = 14.371, b = 6.710, c = 10.388, β = 122.17° |
Fluorescence lifetime (μs) | 250 |
Density (g/cm3) | 4.3 |
Thermal conductivity (W/mK) | 4.5 |
Melting temperature (°C) | 2000 |
Raman shift (cm−1) | 904 |
Raman line width (cm−1) | 6 |
Raman gain coefficient (cm/GW) | 2.3@1078 nm |
Emission cross-section σem (10−19 cm2) | 1 |
Optical damage threshold (J/cm2) | 7.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Dai, S.; Zhu, S.; Yin, H.; Li, Z.; Chen, Z. Multifunctional Optical Crystals for All-Solid-State Raman Lasers. Crystals 2021, 11, 114. https://doi.org/10.3390/cryst11020114
Zhao H, Dai S, Zhu S, Yin H, Li Z, Chen Z. Multifunctional Optical Crystals for All-Solid-State Raman Lasers. Crystals. 2021; 11(2):114. https://doi.org/10.3390/cryst11020114
Chicago/Turabian StyleZhao, Hui, Shibo Dai, Siqi Zhu, Hao Yin, Zhen Li, and Zhenqiang Chen. 2021. "Multifunctional Optical Crystals for All-Solid-State Raman Lasers" Crystals 11, no. 2: 114. https://doi.org/10.3390/cryst11020114
APA StyleZhao, H., Dai, S., Zhu, S., Yin, H., Li, Z., & Chen, Z. (2021). Multifunctional Optical Crystals for All-Solid-State Raman Lasers. Crystals, 11(2), 114. https://doi.org/10.3390/cryst11020114