Influence of Calcination Temperature on Crystal Growth and Optical Characteristics of Eu3+ Doped ZnO/Zn2SiO4 Composites Fabricated via Simple Thermal Treatment Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of ZnO/Zn2SiO4 Composite
2.2. Characterization
3. Results and Discussion
3.1. X-ray Diffraction (XRD) Analysis
3.2. Fourier Transform Infrared (FT–IR) Spectroscopy
3.3. Field Emission Scanning Electron Microscope (FESEM) Analysis
3.4. Ultraviolet-Visible Spectroscopy (UV-Vis)
3.5. Optical Band Gap Analysis
3.6. Photoluminescence (PL) Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, X.X.; Cao, W.H. Upconversion luminescence of holmium and ytterbium co-doped yttrium oxysulfide phosphor. Mater. Lett. 2007, 61, 3696–3700. [Google Scholar] [CrossRef]
- Wu, Z.; Mo, S.; Tan, L.; Fang, B.; Su, Z.; Zhang, Y.; Yin, M. Crystallization-Induced Emission Enhancement of a Deep-Blue Luminescence Material with Tunable Mechano-and Thermochromism. Small 2018, 14, 1802524. [Google Scholar] [CrossRef] [PubMed]
- Edgar, A. Luminescent Materials. In Springer Handbook of Electronic and Photonic Materials; Kasap, S., Capper, P., Eds.; Springer International Publishing: Cham, Switzerland, 2017; p. 1. [Google Scholar]
- Rojas-Hernandez, R.E.; Rubio-Marcos, F.; Rodriguez, M.Á.; Fernandez, J.F. Long lasting phosphors: SrAl2O4: Eu, Dy as the most studied material. Renew. Sustain. Energy Rev. 2018, 81, 2759–2770. [Google Scholar] [CrossRef]
- Shionoya, S. Photoluminescence. In Luminescence of Solids; Vij, D.R., Ed.; Springer: Boston, MA, USA, 1998; pp. 95–133. [Google Scholar]
- Khaidir, R.E.M.; Fen, Y.W.; Zaid, M.H.M.; Matori, K.A.; Omar, N.A.S.; Anuar, M.F.; Wahab, S.A.A.; Azman, A.Z.K. Optical band gap and photoluminescence studies of Eu3+-doped zinc silicate derived from waste rice husks. Optik 2019, 182, 486–495. [Google Scholar] [CrossRef]
- Effendy, N.; Kamari, H.M.; Zaid, M.H.M.; Liew, J.Y.C.; Lee, H.K.; Rahman, N.A.A.; Wahab, S.A.A.; Khiri, W.Z.A.; El-Mallawany, R. Synthesis and green luminescence of low cost Er2O3 doped zinc silicate glass-ceramics as laser materials. Optik 2019, 184, 480–484. [Google Scholar] [CrossRef]
- Rasdi, N.M.; Fen, Y.W.; Omar, N.A.S. Photoluminescence studies of cobalt (II) doped zinc silicate nanophosphors prepared via sol-gel method. Optik 2017, 149, 409–415. [Google Scholar] [CrossRef]
- Yang, R.Y.; Peng, Y.M.; Lai, H.L.; Chu, C.J.; Chiou, B.; Su, Y.K. Effect of the different concentrations of Eu3+ ions on the microstructure and photoluminescent properties of Zn2SiO4: xEu3+ phosphors and synthesized with TEOS solution as silicate source. Opt. Mater. 2013, 35, 1719–1723. [Google Scholar] [CrossRef]
- He, Y.; Zhao, X.; Wang, X.; Chen, L.; Peng, W.; Ouyang, X. Characterizations of an X-ray detector based on a Zn2SiO4 film. Sens. Actuator A Phys. 2015, 236, 98–103. [Google Scholar] [CrossRef]
- Chelouche, A.; Djouadi, D.; Aksas, A. Structural characterization of SiO2/Zn2SiO4: Ce nanocomposite obtained by sol gel method. J. Assoc. Arab Univ. Basic Appl. Sci. 2014, 15, 10–14. [Google Scholar] [CrossRef] [Green Version]
- Ramakrishna, P.V.; Murthy, D.B.R.K.; Sastry, D.L.; Samatha, K. Synthesis, structural and luminescence properties of Mn doped ZnO/Zn2SiO4 composite microphosphor. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 129, 274–279. [Google Scholar] [CrossRef]
- Mbule, P.S.; Ntwaeaborwa, O.M.; Mothudi, B.M.; Dhlamini, M.S. Structural and optical characterization of nanoparticulate manganese doped zinc silicate phosphors prepared by sol–gel and combustion methods. J. Lumin. 2016, 179, 74–82. [Google Scholar] [CrossRef]
- Omar, N.A.S.; Fen, Y.W.; Matori, K.A.; Zaid, M.H.M.; Samsudin, N.F. Structural and optical properties of Eu3+ activated low cost zinc soda lime silica glasses. Results Phys. 2016, 6, 640–644. [Google Scholar] [CrossRef] [Green Version]
- Naeimi, A.; Arabi, A.M.; Merajifar, V. A novel approach to the synthesis of Zn2SiO4: Mn luminescent nanoparticles. J. Mater. Sci. Mater. Electron. 2019, 30, 9123–9132. [Google Scholar] [CrossRef]
- Svetlichnyi, V.; Shabalina, A.; Lapin, I.; Goncharova, D.; Nemoykina, A. ZnO nanoparticles obtained by pulsed laser ablation and their composite with cotton fabric: Preparation and study of antibacterial activity. Appl. Surf. Sci. 2016, 372, 20–29. [Google Scholar] [CrossRef]
- Othman, Z.J.; Matoussi, A. Morphological and optical studies of zinc oxide doped MgO. J. Alloys Compd. 2016, 671, 366–371. [Google Scholar] [CrossRef]
- Xie, J.; Cao, Y.; Jia, D.; Li, Y.; Wang, Y. Solid-state synthesis of Y-doped ZnO nanoparticles with selective-detection gas-sensing performance. Ceram. Int. 2016, 42, 90–96. [Google Scholar] [CrossRef]
- Kumar, H.; Rani, R. Structural and optical characterization of ZnO nanoparticles synthesized by microemulsion route. Int. Lett. Chem. Phys. Astron. 2013, 14, 26–36. [Google Scholar] [CrossRef] [Green Version]
- Essalah, G.; Kadim, G.; Jabar, A.; Masrour, R.; Ellouze, M.; Guermazi, H.; Guermazi, S. Structural, optical, photoluminescence properties and Ab initio calculations of new Zn2SiO4/ZnO composite for white light emitting diodes. Ceram. Int. 2020, 46, 12656–12664. [Google Scholar] [CrossRef]
- Elhadi, S.E.; Liu, C.; Zhao, Z.; Li, K.; Zhao, X. Structure and optical properties of ZnO/Zn2SiO4 composite thin films containing Eu3+ ions. Thin Solid Films 2018, 668, 1–8. [Google Scholar] [CrossRef]
- Ramakrishna, P.V.; Murthy, D.B.R.K.; Sastry, D.L. White-light emitting Eu3+ co-doped ZnO/Zn2SiO4: Mn2+ composite microphosphor. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 125, 234–238. [Google Scholar] [CrossRef]
- Omar, N.A.S.; Fen, Y.W.; Matori, K.A.; Zaid, M.H.M.; Norhafizah, M.R.; Nurzilla, M.; Zamratul, M.I.M. Synthesis and optical properties of europium doped zinc silicate prepared using low cost solid state reaction method. J. Mater. Sci. Mater. Electron. 2016, 27, 1092–1099. [Google Scholar] [CrossRef]
- Copeland, T.S.; Lee, B.I.; Qi, J.; Elrod, A.K. Synthesis and luminescent properties of Mn2+-doped zinc silicate phosphors by sol–gel methods. J. Lumin. 2002, 97, 168–173. [Google Scholar] [CrossRef]
- Xu, G.Q.; Xu, H.T.; Zheng, Z.X.; Wu, Y.C. Preparation and characterization of Zn2SiO4: Mn phosphors with hydrothermal methods. J. Lumin. 2010, 130, 1717–1720. [Google Scholar] [CrossRef]
- Alibe, I.M.; Matori, K.A.; Yaakob, Y.; Rashid, U.; Alibe, A.M.; Zaid, M.H.M.; Nasir, S.; Nasir, M.M. Effects of polyvinylpyrrolidone on structural and optical properties of willemite semiconductor nanoparticles by polymer thermal treatment method. J. Therm. Anal. Calorim. 2019, 136, 2249–2268. [Google Scholar] [CrossRef] [Green Version]
- Salem, A.; Saion, E.; Al-Hada, N.M.; Kamari, H.M.; Shaari, A.H.; Radiman, S. Simple synthesis of ZnSe nanoparticles by thermal treatment and their characterization. Results Phys. 2017, 7, 1175–1180. [Google Scholar] [CrossRef]
- Baqer, A.A.; Matori, K.A.; Al-Hada, N.M.; Shaari, A.H.; Kamari, H.M.; Saion, E.; Chyi, J.L.Y.; Abdullah, C.A.C. Synthesis and characterization of binary (CuO)0.6(CeO2)0.4 nanoparticles via a simple heat treatment method. Results Phys. 2018, 9, 471–478. [Google Scholar] [CrossRef]
- Naseri, M.G.; Saion, E.B.; Ahangar, H.A.; Hashim, M.; Shaari, A.H. Simple preparation and characterization of nickel ferrite nanocrystals by a thermal treatment method. Powder Technol. 2011, 212, 80–88. [Google Scholar] [CrossRef]
- Al-Hada, N.M.; Saion, E.B.; Shaari, A.H.; Kamarudin, M.A.; Flaifel, M.H.; Ahmad, S.H.; Gene, S.A. A facile thermal-treatment route to synthesize ZnO nanosheets and effect of calcination temperature. PLoS ONE 2014, 9, 103134. [Google Scholar] [CrossRef]
- Lee, P.J.; Saion, E.; Al-Hada, N.M.; Soltani, N. A simple up-scalable thermal treatment method for synthesis of ZnO nanoparticles. Metals 2015, 5, 2383–2392. [Google Scholar] [CrossRef] [Green Version]
- Alibe, I.M.; Matori, K.A.; Saion, E.; Alibe, A.M.; Zaid, M.H.M.; Engku, E.G. A facile synthesis of amorphous silica nanoparticles by simple thermal treatment route. Dig. J. Nanomater. Biostruct 2016, 11, 1155–1164. [Google Scholar]
- Alibe, I.M.; Matori, K.A.; Aziz, S.H.A.; Yazid, Y.; Saion, E.; Alibe, A.M.; Zaid, M.H.M.; Ghapur Engku, E.A.A.; Zangina, T. The Influence of Calcination Temperature on Structural and Optical properties of ZnO-SiO2 Nanocomposite by Simple Thermal Treatment Route. Arch. Metall. Mater. 2018, 63, 539–545. [Google Scholar]
- Engku Ali, E.A.G.; Matori, K.A.; Saion, E.; Aziz, S.; Zaid, M.H.M.; Alibe, I.M. Calcination effect to the physical and optical properties of Zn2SiO4 composite prepared by impregnation of ZnO on SiO2 amorphous nanoparticles. MS&E 2018, 440, 012036. [Google Scholar]
- Alibe, I.M.; Matori, K.A.; Saion, E.; Ali, A.M.; Zaid, M.H.M. The influence of calcination temperature on structural and optical properties of ZnO nanoparticles via simple polymer synthesis route. Sci. Sinter. 2017, 49, 263–275. [Google Scholar] [CrossRef]
- Parhi, P.; Manivannan, V. Novel microwave initiated synthesis of Zn2SiO4 and MCrO4 (M = Ca, Sr, Ba, Pb). J. Alloys Compd. 2009, 469, 558–564. [Google Scholar] [CrossRef]
- Krsmanović, R.M.; Antić, Ž.; Mitrić, M.; Dramićanin, M.D.; Brik, M.G. Structural, spectroscopic and crystal field analyses of Ni2+ and Co2+ doped Zn2SiO4 powders. Appl. Phys. A 2011, 104, 483–492. [Google Scholar] [CrossRef]
- Babu, B.C.; Rao, B.V.; Ravi, M.; Babu, S. Structural, microstructural, optical, and dielectric properties of Mn2+: Willemite Zn2SiO4 nanocomposites obtained by a sol-gel method. J. Mol. Struct. 2017, 1127, 6–14. [Google Scholar] [CrossRef]
- Singh, V.; Prasad, A.; Deopa, N.; Rao, A.S.; Jung, S.; Singh, N.; Rao, J.L.; Lakshminarayana, G. Luminescence features of Mn2+-doped Zn2SiO4: A green color emitting phosphor for solid-state lighting. Optik 2021, 225, 165715. [Google Scholar] [CrossRef]
- Diao, C.C.; Yang, C.F.; Wang, R.L.; Lin, J.J.; Fu, M.Y. Prepare high efficiency Mn2+-doped Zn2SiO4 green phosphors in air using nano-particles. J. Lumin. 2011, 131, 915–920. [Google Scholar] [CrossRef]
- Babu, B.C.; Buddhudu, S. Emission spectra of Tb3+: Zn2SiO4 and Eu3+: Zn2SiO4 sol-gel powder phosphors. J. Spectrosc. Dyn. 2014, 4, 1–8. [Google Scholar]
- Mohd Zaid, M.H.; Amin Matori, K.; Abdul Aziz, S.H.; Kamari, H.M.; Mat Yunus, W.M.; Abdul Wahab, Z.; Samsudin, N.F. Fabrication and crystallization of ZnO-SLS glass derived willemite glass-ceramics as a potential material for optics applications. J. Spectrosc 2016, 2016, 1–7. [Google Scholar] [CrossRef]
- Molla, A.R.; Tarafder, A.; Karmakar, B. Synthesis and properties of glasses in the K2O–SiO2–Bi2O3–TiO2 system and bismuth titanate (Bi4Ti3O12) nano glass–ceramics thereof. J. Mater. Sci. 2011, 46, 2967–2976. [Google Scholar] [CrossRef]
- Pal, M.; Pal, U.; Jiménez, J.M.G.Y.; Pérez-Rodríguez, F. Effects of crystallization and dopant concentration on the emission behavior of TiO2: Eu nanophosphors. Nanoscale Res. Lett. 2012, 7, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omri, K.; Lemine, O.M.; El Mir, L. Mn doped zinc silicate nanophosphor with bifunctionality of green-yellow emission and magnetic properties. Ceram. Int. 2017, 43, 6585–6591. [Google Scholar] [CrossRef]
- Babu, B.C.; Buddhudu, S. Analysis of structural and electrical properties of Ni2+: Zn2SiO4 ceramic powders by sol–gel method. J. Sol-Gel Sci. Technol. 2014, 70, 405–415. [Google Scholar] [CrossRef]
- Babu, B.C.; Naresh, V.; Prakash, B.J.; Buddhudu, S. Structural, thermal and dielectric properties of lithium zinc silicate ceramic powders by sol-gel method. Ferroelectr. Lett. Sect. 2011, 38, 114–127. [Google Scholar] [CrossRef]
- Ali, E.A.G.E.; Matori, K.A.; Saion, E.; Ab Aziz, S.H.; Zaid, M.H.M.; Alibe, I.M. Effect of sintering temperatures on structural and optical properties of ZnO-Zn2SiO4 composite prepared by using amorphous SiO2 nanoparticles. J. Aust. Ceram. Soc. 2019, 55, 115–122. [Google Scholar]
- Ali, E.E.; Matori, K.A.; Saion, E.; Aziz, S.H.A.; Zaid, M.H.M.; Alibe, I.M. Structural and optical properties of heat treated Zn2SiO4 composite prepared by impregnation of ZnO on SiO2 amorphous nanoparticles. ASM Sci. J. 2018, 11, 75–85. [Google Scholar]
- Omar, N.A.S.; Fen, Y.W.; Matori, K.A.; Aziz, S.H.A.; Alassan, Z.N.; Samsudin, N.F. Development and characterization studies of Eu3+-doped Zn2SiO4 phosphors with waste silicate sources. Procedia Chem. 2016, 19, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Masjedi-Arani, M.; Salavati-Niasari, M. A simple sonochemical approach for synthesis and characterization of Zn2SiO4 nanostructures. Ultrason. Sonochem. 2016, 29, 226–235. [Google Scholar] [CrossRef]
- Hashem, M.; Saion, E.; Al-Hada, N.M.; Kamari, H.M.; Shaari, A.H.; Talib, Z.A.; Paiman, S.B.; Kamarudeen, M.A. Fabrication and characterization of semiconductor nickel oxide (NiO) nanoparticles manufactured using a facile thermal treatment. Results Phys. 2016, 6, 1024–1030. [Google Scholar] [CrossRef] [Green Version]
- Tarafder, A.; Molla, A.R.; Dey, C.; Karmakar, B. Thermal, Structural, and Enhanced Photoluminescence Properties of Eu3+-doped Transparent Willemite Glass–Ceramic Nanocomposites. J. Am. Ceram. Soc. 2013, 96, 2424–2431. [Google Scholar] [CrossRef]
- Omar, N.A.S.; Fen, Y.W.; Matori, K.A. Europium doped low cost Zn2SiO4 based glass ceramics: A study on fabrication, structural, energy band gap and luminescence properties. Mater. Sci. Semicond. Process. 2017, 61, 27–34. [Google Scholar] [CrossRef]
- Lourenco, S.A.; Dantas, N.O.; Serqueira, E.O.; Ayta, W.E.F.; Andrade, A.A.; Filadelpho, M.C.; Sampaio, J.A.; Bell, M.J.V.; Pereira-da-Silva, M.A. Eu3+ photoluminescence enhancement due to thermal energy transfer in Eu2O3-doped SiO2–B2O3–PbO2 glasses system. J. Lumin. 2011, 131, 850–855. [Google Scholar] [CrossRef]
- Alibe, I.M.; Matori, K.A.; Sidek, H.A.A.; Yaakob, Y.; Rashid, U.; Alibe, A.M.; Mohd Zaid, M.H.; Ahmad Khiri, M.Z. Effects of calcination holding time on properties of wide band gap willemite semiconductor nanoparticles by the polymer thermal treatment method. Molecules 2018, 23, 873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, X.D.; Li, X.M.; Yu, W.D. Synthesis and optical properties of ZnO nanocluster porous films deposited by modified SILAR method. Appl. Surf. Sci. 2004, 229, 275–281. [Google Scholar] [CrossRef]
- Chen, H.; Ding, J.; Guo, W.; Chen, G.; Ma, S. Blue-green emission mechanism and spectral shift of Al-doped ZnO films related to defect levels. RSC Adv. 2013, 3, 12327–12333. [Google Scholar] [CrossRef]
- Zeng, H.; Duan, G.; Li, Y.; Yang, S.; Xu, X.; Cai, W. Blue Luminescence of ZnO nanoparticles based on non-equilibrium processes: Defect origins and emission controls. Adv. Funct. Mater. 2010, 20, 561–572. [Google Scholar] [CrossRef]
- Renitta, A.; Vijayalakshmi, K. Highly sensitive hydrogen safety sensor based on Cr incorporated ZnO nano-whiskers array fabricated on ITO substrate. Sens. Actuators B Chem. 2016, 237, 912–923. [Google Scholar] [CrossRef]
- Yawalkar, M.M.; Nair, G.B.; Zade, G.D.; Dhoble, S.J. Effect of the synthesis route on the luminescence properties of Eu3+ activated Li6M(BO3)3 (M = Y, Gd) phosphors. Mater. Chem. Phys. 2017, 189, 136–145. [Google Scholar] [CrossRef]
- Đačanin, L.; Lukić, S.R.; Petrović, D.M.; Nikolić, M.; Dramićanin, M.D. Judd–Ofelt analysis of luminescence emission from Zn2SiO4: Eu3+ nanoparticles obtained by a polymer-assisted sol–gel method. Phys. B Condens. Matter. 2011, 406, 2319–2322. [Google Scholar] [CrossRef]
- Chen, P.; Ma, X.; Yang, D. ZnO: Eu thin-films: Sol–gel derivation and strong photoluminescence from 5D0→ 7F0 transition of Eu3+ ions. J. Alloys Compd. 2007, 431, 317–320. [Google Scholar] [CrossRef]
- Golja, D.R.; Dejene, F.B. Effect of Eu3+ ion concentration on the structural and photoluminescence properties of Ba1.3Ca0.7SiO4 ceramic-based red phosphors for solid-state lighting applications. J. Alloys Compd. 2020, 827, 154216. [Google Scholar] [CrossRef]
- Basavaraj, R.B.; Nagabhushana, H.; Prasad, B.D.; Sharma, S.C.; Prashantha, S.C.; Nagabhushana, B.M. A single host white light emitting Zn2SiO4: Re3+ (Eu, Dy, Sm) phosphor for LED applications. Optik 2015, 126, 1745–1756. [Google Scholar] [CrossRef]
- Xie, X.; Chen, J.; Song, Y.; Zhou, X.; Zheng, K.; Zhang, X.; Shi, Z.; Zou, H.; Sheng, Y. Zn2SiO4: Eu3+ micro-structures: Controlled morphologies and luminescence properties. J. Lumin. 2017, 187, 564–572. [Google Scholar] [CrossRef]
- Zhang, H.X.; Buddhudu, S.; Kam, C.H.; Zhou, Y.; Lam, Y.L.; Wong, K.S.; Ooi, B.S.; Ng, S.L.; Que, W.X. Luminescence of Eu3+ and Tb3+ doped Zn2SiO4 nanometer powder phosphors. Mater. Chem. Phys. 2001, 68, 31–35. [Google Scholar] [CrossRef]
- Gupta, S.K.; Ghosh, P.S.; Sahu, M.; Bhattacharyya, K.; Tewari, R.; Natarajan, V. Intense red emitting monoclinic LaPO4: Eu3+ nanoparticles: Host–dopant energy transfer dynamics and photoluminescence properties. RSC Adv. 2015, 5, 58832–58842. [Google Scholar] [CrossRef] [Green Version]
Wavenumber (cm−1) | Assignment of Vibrational Mode | Reference(s) |
---|---|---|
462–580 | ZnO4 symmetric stretching vibration | [21,38,41] |
620 | ZnO4 asymmetric stretching vibration | [21,41,42,46] |
700 | SiO torsional vibrations | [41] |
812–884 | SiO4 symmetric stretching vibration | [38,42,45,46,47] |
989 | SiO4 asymmetric stretching vibration | [15,45,47] |
1100 | Si-O-Si asymmetric stretching vibration | [15,20] |
Sample | Calcination Temperature (°C) | ZnO Eg (eV) | Zn2SiO4 Eg (eV) |
---|---|---|---|
undoped | 600 °C | 3.21 | 5.21 |
undoped | 700 °C | 3.19 | 5.18 |
undoped | 800 °C | 3.17 | 5.09 |
Eu3+ doped | 600 °C | 3.27 | 5.11 |
Eu3+ doped | 700 °C | 3.68 | 4.93 |
Eu3+ doped | 800 °C | 4.07 | 4.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaafar, S.H.; Zaid, M.H.M.; Matori, K.A.; Aziz, S.H.A.; Mohamed Kamari, H.; Honda, S.; Iwamoto, Y. Influence of Calcination Temperature on Crystal Growth and Optical Characteristics of Eu3+ Doped ZnO/Zn2SiO4 Composites Fabricated via Simple Thermal Treatment Method. Crystals 2021, 11, 115. https://doi.org/10.3390/cryst11020115
Jaafar SH, Zaid MHM, Matori KA, Aziz SHA, Mohamed Kamari H, Honda S, Iwamoto Y. Influence of Calcination Temperature on Crystal Growth and Optical Characteristics of Eu3+ Doped ZnO/Zn2SiO4 Composites Fabricated via Simple Thermal Treatment Method. Crystals. 2021; 11(2):115. https://doi.org/10.3390/cryst11020115
Chicago/Turabian StyleJaafar, Suhail Huzaifa, Mohd Hafiz Mohd Zaid, Khamirul Amin Matori, Sidek Hj. Ab Aziz, Halimah Mohamed Kamari, Sawao Honda, and Yuji Iwamoto. 2021. "Influence of Calcination Temperature on Crystal Growth and Optical Characteristics of Eu3+ Doped ZnO/Zn2SiO4 Composites Fabricated via Simple Thermal Treatment Method" Crystals 11, no. 2: 115. https://doi.org/10.3390/cryst11020115
APA StyleJaafar, S. H., Zaid, M. H. M., Matori, K. A., Aziz, S. H. A., Mohamed Kamari, H., Honda, S., & Iwamoto, Y. (2021). Influence of Calcination Temperature on Crystal Growth and Optical Characteristics of Eu3+ Doped ZnO/Zn2SiO4 Composites Fabricated via Simple Thermal Treatment Method. Crystals, 11(2), 115. https://doi.org/10.3390/cryst11020115