Performance of SCAN Meta-GGA Functionals on Nonlinear Mechanics of Graphene-Like g-SiC
Abstract
:1. Introduction
2. Computation Method
3. Results and Discussion
3.1. Atomic Structure
3.2. Strain Energy Profile
3.3. Stress-Strain Curves
3.4. High Order Elastic Constants
3.5. Pressure Effect on Elastic Constants
3.6. Pressure Effect on the Soundwave Speed
3.7. Elastic Stability
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, Z.; Zhang, Z.; Kutana, A.; Yakobson, B.I. Predicting Two-Dimensional Silicon Carbide Mono layers. ACS Nano 2015, 9, 9802–9809. [Google Scholar] [CrossRef]
- Şahin, H.; Cahangirov, S.; Topsakal, M.; Bekaroglu, E.; Akturk, E.; Senger, R.T.; Ciraci, S. Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations. Phys. Rev. B 2009, 80, 155453. [Google Scholar] [CrossRef] [Green Version]
- Lu, T.Y.; Liao, X.X.; Wang, H.Q.; Zheng, J.C. Tuning the indirect-direct band gap transition of SiC, GeC and SnC monolayer in a graphene-like honeycomb structure by strain engineering: A quasiparticle GW study. J. Mater. Chem. 2012, 22, 10062–10068. [Google Scholar] [CrossRef]
- Ganguly, G.; De, S.C.; Ray, S.; Barua, A.K. Polycrystalline silicon-carbide films deposited by low-power radiofrequency plasma decomposition of SiF4-CF4-H2 Gas-mixtures. J. Appl. Phys. 1991, 69, 3915–3923. [Google Scholar] [CrossRef]
- Lin, S.S. Light-Emitting Two-Dimensional Ultrathin Silicon Carbide. J. Phys. Chem. C 2012, 116, 3951–3955. [Google Scholar] [CrossRef]
- Wu, R.; Zhou, K.; Yue, C.Y.; Wei, J.; Pan, Y. Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Prog. Mater Sci. 2015, 72, 1–60. [Google Scholar] [CrossRef]
- Lin, X.; Lin, S.; Xu, Y.; Hakro, A.A.; Hasan, T.; Zhang, B.; Yu, B.; Luo, J.; Li, E.; Chen, H. Ab initio study of electronic and optical behavior of two-dimensional silicon carbide. J. Mater. Chem. C 2013, 1, 2131–2135. [Google Scholar] [CrossRef]
- Hsueh, H.C.; Guo, G.Y.; Louie, S.G. Excitonic effects in the optical properties of a SiC sheet and nanotubes. Phys. Rev. B 2011, 84, 085404. [Google Scholar] [CrossRef] [Green Version]
- Wu, I.J.; Guo, G.Y. Optical properties of SiC nanotubes: An ab initio study. Phys. Rev. B 2007, 76, 035343. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Li, Y.; Li, Z.; Li, Q.; Zhou, Z.; Chen, Z.; Yang, J.; Hou, J.G. Electronic structures of SiC nanoribbons. J. Chem. Phys. 2008, 129, 174114. [Google Scholar] [CrossRef]
- Bekaroglu, E.; Topsakal, M.; Cahangirov, S.; Ciraci, S. First-principles study of defects and adatoms in silicon carbide honeycomb structures. Phys. Rev. B 2010, 81, 075433. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.J.; Zhang, Y.F.; Wu, L.M. SiC2 Siligraphene and Nanotubes: Novel Donor Materials in Excitonic Solar Cells. Nano Lett. 2013, 13, 5431–5436. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Xie, Y.; Liu, L.M.; Chena, Y. Versatile electronic properties and exotic edge states of single-layer tetragonal silicon carbides. Phys. Chem. Chem. Phys. 2015, 17, 11211–11216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, P.; Xiao, B.B.; Hou, X.L.; Zhu, Y.F.; Jiang, Q. Layered SiC Sheets: A Potential Catalyst for Oxygen Reduction Reaction. Sci. Rep. 2014, 4, 3821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, X.; Lin, S.; Xu, Y.; Chen, H. Electronic structures of multilayer two-dimensional silicon carbide with oriented misalignment. J. Mater. Chem. C 2015, 3, 9057–9062. [Google Scholar] [CrossRef]
- Yu, M.; Jayanthi, C.S.; Wu, S.Y. Geometric and electronic structures of graphitic-like and tubular silicon carbides: Ab-initio studies. Phys. Rev. B 2010, 82, 075407. [Google Scholar] [CrossRef] [Green Version]
- Guilhon, I.; Teles, L.K.; Marques, M.; Pela, R.R.; Bechstedt, F. Influence of structure and thermodynamic stability on electronic properties of two-dimensional SiC, SiGe, and GeC alloys. Phys. Rev. B 2015, 92, 075435. [Google Scholar] [CrossRef]
- Wang, N.; Tian, Y.; Zhao, J.; Jin, P. CO oxidation catalyzed by silicon carbide (SiC) monolayer: A theoretical study. J. Mol. Graph. Modell. 2016, 66, 196–200. [Google Scholar] [CrossRef]
- Deng, S.; Sumant, A.V.; Berry, V. Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today 2018, 22, 14–35. [Google Scholar] [CrossRef]
- Ariga, K.; Mori, T.; Hill, J.P. Mechanical Control of Nanomaterials and Nanosystems. Adv. Mater. 2012, 24, 158–176. [Google Scholar] [CrossRef]
- Dai, Y.; Li, S.; Gao, H.; Wang, W.; Sun, Q.; Peng, Q.; Gui, C.; Qian, Z.; Liu, S. Stress evolution in AlN and GaN grown on Si(111): Experiments and theoretical modeling. J. Mater. Sci. 2015, 27, 2004–2013. [Google Scholar] [CrossRef]
- Dai, Y.; Wang, W.; Gui, C.; Wen, X.; Peng, Q.; Liu, S. A first-principles study of the mechanical properties of AlN with Raman verification. Comput. Mater. Sci. 2016, 112, 342–346. [Google Scholar] [CrossRef]
- Peng, Q.; Chen, X.J.; Ji, W.; De, S. Chemically Tuning Mechanics of Graphene by BN. Adv. Eng. Mater. 2013, 15, 718–727. [Google Scholar] [CrossRef]
- Peng, Q.; Liang, C.; Ji, W.; De, S. A First-principles Study of the Mechanical Properties of g-GeC. Mech. Mater. 2013, 64, 135–141. [Google Scholar] [CrossRef]
- Peng, Q.; Sun, X.; Wang, H.; Yang, Y.; Wen, X.D.; Huang, C.; Liu, S.; De, S. Theoretical prediction of a graphene-like structure of Indium Nitride: A promising excellent material for optoelectronics. Appl. Mater. Today 2017, 7, 169. [Google Scholar] [CrossRef]
- Xu, Z.; Li, Y.; Liu, Z. Controlling electronic and optical properties of layered SiC and GeC sheets by strain engineering. Mater. Des. 2016, 108, 333–342. [Google Scholar] [CrossRef]
- Peng, Q.; Zamiri, A.R.; Ji, W.; De, S. Elastic Properties of Hybrid Graphene/Boron Nitride Monolayer. Acta Mech. 2012, 223, 2591–2596. [Google Scholar] [CrossRef] [Green Version]
- Peng, Q.; Ji, W.; De, S. Mechanical Properties of Graphyne Monolayer: A First-Principles Study. Phys. Chem. Chem. Phys. 2012, 14, 13385–13391. [Google Scholar] [CrossRef] [Green Version]
- Peng, Q.; Dearden, A.K.; Chen, X.J.; Huang, C.; Wen, X.; De, S. Peculiar pressure effect on Poisson ratio of graphone as a strain damper. Nanoscale 2015, 7, 9975–9979. [Google Scholar] [CrossRef]
- Peng, Q. High-order nonlinear mechanical properties of g-SiC. Mech. Mater. 2020, 148, 103473. [Google Scholar] [CrossRef]
- Sousa, S.F.; Fernandes, P.A.; Ramos, M.J. General Performance of Density Functionals. J. Phys. Chem. A 2007, 111, 10439–10452. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Schmidt, K. Jacob’s ladder of density functional approximations for the exchange-correlation energy. AIP Conf. Proc. 2001, 577, 1–20. [Google Scholar]
- Perdew, J.P.; Ruzsinszky, A.; Tao, J.; Staroverov, V.N.; Scuseria, G.E.; Csonka, G.I. Prescription for the design and selection of density functional approximations: More constraint satisfaction with fewer fits. J. Chem. Phys. 2005, 123, 062201. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Ruzsinszky, A.; Perdew, J.P. Strongly Constrained and Appropriately Normed Semilocal Density Functional. Phys. Rev. Lett. 2015, 115, 036402. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Remsing, R.C.; Zhang, Y.; Sun, Z.; Ruzsinszky, A.; Peng, H.; Yang, Z.; Paul, A.; Waghmare, U.; Wu, X.; et al. Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional. Nat. Chem. 2016, 8, 831–836. [Google Scholar] [CrossRef]
- Marianetti, C.A.; Yevick, H.G. Failure Mechanisms of Graphene under Tension. Phys. Rev. Lett. 2010, 105, 245502. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [Green Version]
- Peng, Q.; Wang, G.; Liu, G.R.; De, S. Van der Waals Density Functional Theory vdW-DFq for Semihard Materials. Crystals 2019, 9, 243. [Google Scholar] [CrossRef] [Green Version]
- Peng, Q.; Ji, W.; De, S. Mechanical properties of the hexagonal boron nitride monolayer: Ab initio study. Comput. Mater. Sci. 2012, 56, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Peng, Q.; Liang, C.; Ji, W.; De, S. A First Principles Investigation of the Mechanical Properties of g-TlN. Model. Numer. Simul. Mater. Sci. 2012, 2, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Peng, Q.; Liang, C.; Ji, W.; De, S. A First Principles Investigation of the Mechanical Properties of g-ZnO: The Graphene-like Hexagonal Zinc Oxide Monolayer. Comput. Mater. Sci. 2013, 68, 320–324. [Google Scholar] [CrossRef]
- Peng, Q.; Ji, W.; De, S. First-Principles study of the Effects of Mechanical Strains on the Radiation Hardness of Hexagonal Boron Nitride Monolayers. Nanoscale 2013, 5, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Liang, C.; Ji, W.; De, S. A Theoretical Analysis of the Effect of the Hydrogenation of Graphene to Graphane on Its Mechanical Properties. Phys. Chem. Chem. Phys. 2013, 15, 2003–2011. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Chen, X.J.; Liu, S.; De, S. Mechanical Stabilities and Properties of Graphene-like Aluminum Nitride Predicted from First-principles Calculations. RSC Adv. 2013, 3, 7083–7092. [Google Scholar] [CrossRef]
- Peng, Q.; Liang, C.; Ji, W.; De, S. Mechanical Properties of g-GaN: A First Principles Study. Appl. Phys. A 2013, 13, 483–490. [Google Scholar] [CrossRef]
- Peng, Q.; Chen, Z.; De, S. A density functional theory study of the mechanical properties of graphane with van der Waals corrections. Mech. Adv. Mater. Struct. 2015, 22, 717–721. [Google Scholar] [CrossRef]
- Peng, Q.; Wen, X.; De, S. Mechanical stabilities of Silicene. RSC Adv. 2013, 3, 13772–13781. [Google Scholar] [CrossRef]
- Peng, Q.; De, S. Outstanding mechanical properties of monolayer MoS2 and its application in elastic energy storage. Phys. Chem. Chem. Phys. 2013, 15, 19427–19437. [Google Scholar] [CrossRef]
- Peng, Q.; De, S. Mechanical properties and instabilities of ordered graphene oxide C6O monolayer. RSC Adv. 2013, 3, 24337–24344. [Google Scholar] [CrossRef]
- Peng, Q.; Han, L.; Wen, X.; Liu, S.; Chen, Z.; Lian, J.; De, S. Mechanical properties and stabilities of α-Boron monolayers. Phys. Chem. Chem. Phys. 2015, 17, 2160–2168. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Han, L.; Wen, X.; Liu, S.; Chen, Z.; Lian, J.; De, S. Mechanical properties and stabilities of g-ZnS monolayers. RSC Adv. 2015, 5, 11240–11247. [Google Scholar] [CrossRef]
- Peng, Q.; Han, L.; Lian, J.; Wen, X.; Liu, S.; Chen, Z.; Koratkar, N.; De, S. Mechanical degradation of graphene by epoxidation: Insights from first-principles calculations. Phys. Chem. Chem. Phys. 2015, 17, 19484–19490. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.W. Velocity Ratio and Its Application to Predicting Velocities; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2003.
- Mouhat, F.; Coudert, F.X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 2014, 90, 224104. [Google Scholar] [CrossRef] [Green Version]
- Mazdziarz, M. Comment on ‘The Computational 2D Materials Database: High-throughput modeling and discovery of atomically thin crystals’. 2D Mater. 2019, 6, 048001. [Google Scholar] [CrossRef] [Green Version]
g-SiC (SCAN) | g-SiC (PBE) [30] | Silicene [49] | Graphene [45] | ||
---|---|---|---|---|---|
a (Å) | 3.103 | 3.096 | 3.865 | 2.468 | |
174 | 160.1 | 63.8 | 340.8 | ||
0.304 | 0.314 | 0.325 | 0.178 | ||
17.6 | 16.5 | 6.0 | 28.6 | ||
0.2 | 0.2 | 0.17 | 0.19 | ||
18.2 | 16.7 | 5.9 | 30.4 | ||
0.26 | 0.25 | 0.21 | 0.23 | ||
17.8 | 16.2 | 6.2 | 32.1 | ||
0.20 | 0.19 | 0.17 | 0.23 | ||
SOEC | 191.3 | 177.6 | 71.3 | 352.0 | |
58.2 | 55.7 | 23.2 | 62.6 | ||
TOEC | −1487.6 | −1390.5 | −397.6 | −3089.7 | |
−398.8 | −391.9 | −14.1 | −453.8 | ||
−1261.5 | −1180.9 | −318.9 | −2928.1 | ||
FOEC | 9990 | 9165 | −830 | 21,927 | |
3694 | 3604 | −309 | 2731 | ||
942 | 1162 | −5091 | 3888 | ||
3413 | 3000 | −629 | 18,779 | ||
FFOEC | −41,367 | −37,196 | 20,641 | −118,791 | |
−5129 | −6075 | 6923 | −19,173 | ||
−23,635 | −19,300 | 11,681 | −15,863 | ||
−26,812 | −21,523 | −7593 | −27,463 | ||
−26,130 | −14,127 | −29,735 | −134,752 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Q. Performance of SCAN Meta-GGA Functionals on Nonlinear Mechanics of Graphene-Like g-SiC. Crystals 2021, 11, 120. https://doi.org/10.3390/cryst11020120
Peng Q. Performance of SCAN Meta-GGA Functionals on Nonlinear Mechanics of Graphene-Like g-SiC. Crystals. 2021; 11(2):120. https://doi.org/10.3390/cryst11020120
Chicago/Turabian StylePeng, Qing. 2021. "Performance of SCAN Meta-GGA Functionals on Nonlinear Mechanics of Graphene-Like g-SiC" Crystals 11, no. 2: 120. https://doi.org/10.3390/cryst11020120
APA StylePeng, Q. (2021). Performance of SCAN Meta-GGA Functionals on Nonlinear Mechanics of Graphene-Like g-SiC. Crystals, 11(2), 120. https://doi.org/10.3390/cryst11020120