Studying the C–H Crystals and Mechanical Properties of Sustainable Concrete Containing Recycled Coarse Aggregate with Used Nano-Silica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cement, Water, Natural Aggregates and Superplasticizer
2.2. Recycled Coarse Aggregates (RCA and RCA Containing Used Nano-Silica (RCA-NS))
2.3. Nano-Silica
2.4. Concrete Preparation and Mix Design
3. Results and Discussion
3.1. Slump of Fresh Concrete
3.2. Water Absorption of Concrete Samples
3.3. Compressive Strength of Samples
3.4. Scanning Electron Microscopy (SEM) of Samples
3.5. X-ray Diffraction (XRD) Patterns of Samples
3.6. Fourier Transform Infrared (FT-IR) Graphs of Samples
4. Conclusions
- The findings demonstrate that the water absorption of RCA-UNS samples decreased compared to the control sample.
- Moreover, the findings of the compressive strength test illustrated that compressive strength in the third group increased 12.8%, 10.9%, and 10% by replacing 30%, 40%, and 50% of NAC with RCA-NS at 28 days compared to control samples.
- The SEM results confirm previous results such as water absorption and compressive strength and show that the RCA-UNS 30% sample produced extra C–S–H.
- In addition, the XRD and FT-IR graphs illustrate that in the RCA-UNS samples, more C–H crystal was consumed and converted to C–S–H.
- For the production of sustainable concrete, 30% of natural coarse aggregates can be replaced with recycled coarse aggregate containing used nano-silica. Therefore, the hydration of cement with water produces C–H crystals while reactions induced by coarse aggregate containing used nano-silica consume the C–H crystals.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muduli, R.; Mukharjee, B.B. Performance assessment of concrete incorporating recycled coarse aggregates and metakaolin: A systematic approach. Constr. Build. Mater. 2020, 233, 117223. [Google Scholar] [CrossRef]
- Li, Q.; Hu, J. Mechanical and Durability Properties of Cement-Stabilized Recycled Concrete Aggregate. Sustainability 2020, 12, 7380. [Google Scholar] [CrossRef]
- Danraka, M.N.; Aziz, F.N.A.A.; Jaafar, M.S.; Nasir, N.M.; Abdulrashid, S. Application of Wood Waste Ash in Concrete Making: Revisited. Lect. Notes Civ. Eng. 2019, 69–78. [Google Scholar] [CrossRef]
- Bostanci, S.C. Use of waste marble dust and recycled glass for sustainable concrete production. J. Clean. Prod. 2020, 251, 119785. [Google Scholar] [CrossRef]
- Nguyen, T.T.H.; Mai, H.H.; Phan, D.H.; Nguyen, D.L. Responses of Concrete Using Steel Slag as Coarse Aggregate Replacement under Splitting and Flexure. Sustainability 2020, 12, 4913. [Google Scholar] [CrossRef]
- Thomas, B.S.; Hasan, S.K.; Arel, S. Sustainable concrete containing palm oil fuel ash as a supplementary cementitious material—A review. Renew. Sustain. Energy Rev. 2017, 80, 550–561. [Google Scholar] [CrossRef]
- Memon, S.A.; Khan, M.K. Ash blended cement composites: Eco-friendly and sustainable option for utilization of corncob ash. J. Clean. Prod. 2018, 175, 442–455. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Cillari, G.; Ricciardi, P.; Miino, M.C.; Torretta, V.; Rada, E.C.; Abbà, A. The Production of Sustainable Concrete with the Use of Alternative Aggregates: A Review. Sustainability 2020, 12, 7903. [Google Scholar] [CrossRef]
- Golewski, G.L. Generalized Fracture Toughness and Compressive Strength of Sustainable Concrete Including Low Calcium Fly Ash. Materials 2017, 10, 1393. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.H.; Islam, J. Use of nano-silica to reduce setting time and increase early strength of concretes with high volumes of fly ash or slag. Constr. Build. Mater. 2012, 29, 573–580. [Google Scholar] [CrossRef]
- Tam, V.W.; Soomro, Y.; Evangelista, A.C.J. A review of recycled aggregate in concrete applications (2000–2017). Constr. Build. Mater. 2018, 172, 272–292. [Google Scholar] [CrossRef]
- Majhi, R.; Nayak, A.N.; Mukharjee, B.B. Development of sustainable concrete using recycled coarse aggregate and ground granulated blast furnace slag. Constr. Build. Mater. 2018, 159, 417–430. [Google Scholar] [CrossRef]
- Katare, V.D.; Madurwar, M.V. Design and investigation of sustainable pozzolanic material. J. Clean. Prod. 2020, 24, 14–25. [Google Scholar] [CrossRef]
- Nicoara, A.I.; Stoica, A.E.; Vrabec, M.; Rogan, N.S.; Sturm, S.; Ow-Yang, C.; Gulgun, M.A.; Bundur, Z.B.; Ciuca, I.; Vasile, B.S. End-of-Life Materials Used as Supplementary Cementitious Materials in the Concrete Industry. Materials 2020, 13, 1954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golewski, G.L. Green concrete composite incorporating fly ash with high strength and fracture toughness. J. Clean. Prod. 2018, 172, 218–226. [Google Scholar] [CrossRef]
- Zhang, L.W.; Sojobi, A.O.; Kodur, V.K.R.; Liew, K.M. Effective utilization and recycling of mixed recycled aggregates for a green erenvironment. J. Clean. Prod. 2019, 236, 117600. [Google Scholar] [CrossRef]
- Mukharjee, B.B.; Barai, S.V. Influence of nano-silica on the properties of recycled aggregate concrete. Constr. Build. Mater. 2014, 55, 29–37. [Google Scholar] [CrossRef]
- Omrane, M.; Kenai, S.; Kadri, E.; Aït-Mokhtar, A. Performance and durability of self compacting concrete using recycled concrete aggregates and natural pozzolan. J. Clean. Prod. 2017, 165, 415–430. [Google Scholar] [CrossRef]
- Ling, T.C.; Poon, S.V. Use of recycled CRT funnel glass as fine aggregate in dry mixe concrete paving blocks. J. Cleaner Prod. 2014, 68, 209–215. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, F.; Wang, Y.; Zhang, X.; Niu, H. Impact properties of recycled aggregate concrete with nanosilica modification. Adv. Civ. Eng. 2020, 1–10. [Google Scholar] [CrossRef]
- Prasada Rao, D.V.; Navaneethamma, V. Influence of nano-silica on strength properties of concrete containing rice husk ash. Int. J. Adv. Res. 2016, 3, 39–43. [Google Scholar]
- Younis, K.H.; Mustafa, S. Feasibility of Using Nanoparticles of SiO2 to Improve the Performance of Recycled Aggregate Concrete. Adv. Mater. Sci. Eng. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Farzadnia, N.; Noorvand, H.; Yasin, A.M.; Aziz, F.N.A. The effect of nano silica on short term drying shrinkage of POFA cement mortars. Constr. Build. Mater. 2015, 95, 636–646. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, Q. Effect of Silica Fume in Concrete on Mechanical Properties and Dynamic Behaviors under Impact Loading. Materials 2019, 12, 3263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sikora, P.; Horszczaruk, E.; Skoczylas, K.; Rucins, T. Thermal properties of cement mortars containing waste glass aggregate and nanosilica. Procedia Eng. 2017, 196, 159–166. [Google Scholar] [CrossRef]
- Hosseini, P.; Booshehrian, A.; Madari, A. Developing Concrete Recycling Strategies by Utilizationof Nano-SiO2Particles. Waste Biomass Valorization 2011, 2, 347–355. [Google Scholar] [CrossRef]
- Li, W.; Long, C.; Tam, V.W.Y.; Poon, C.S.; Duan, H. Effects of nano-particles on failure process and microstructural properties of recycled aggregate concrete. Constr. Build. Mater. 2017, 142, 42–50. [Google Scholar] [CrossRef]
- Varghese, J.; Gopinath, A.; Bahurudeen, A.; Senthilkumar, R. Influence of nano-silica on characteristics of cement mortar and concrete. Sustain. Constr. Build. Mater. 2018, 25, 839–851. [Google Scholar]
- Roychand, R.; Silva, S.D.; Setunge, S.; Law, D. A quantitative study on the effect of nano SiO2, nano Al2O3 and nano CaCO3 on the physicochemical properties of very high volume fly ash cement composite. Eur. J. Environ. Civ. Eng. 2017, 2, 1–16. [Google Scholar] [CrossRef]
- Vishwakarma, V.; Ramachandran, D. Green Concrete mix using solid waste and nanoparticles as alternatives—A review. Constr. Build. Mater. 2018, 162, 96–103. [Google Scholar] [CrossRef]
- Kawashima, S.; Hou, P.; Wang, K.; Corr, D.J.; Shah, S.P. Activation of fly ash through nanomodification. Adv. Green Bind. Syst. 2013, 294, 1–11. [Google Scholar]
- Adak, D.; Sarkar, M.; Mandal, S. Structural performance of nano-silica modified fly-ash based geopolymer concrete. Constr. Build. Mater. 2017, 135, 430–439. [Google Scholar] [CrossRef]
- Mukharjee, B.B.; Barai, S.V. Characteristics of sustainable concrete incorporating recycled coarse aggregates and colloidal nano-silica. Adv. Concr. Constr. 2015, 3, 187–202. [Google Scholar] [CrossRef]
- Ying, J.; Zhou, B.; Xiao, J. Pore structure and chloride diffusivity of recycled aggregate concrete with nano-SiO2 and nano-TiO2. Constr. Build. Mater. 2017, 150, 49–55. [Google Scholar] [CrossRef]
- ASTM C150A. Standard Specification for Portland Cement. In Annual book of Standards; ASTM International: West Conshohocken, PA, USA, 1999. [Google Scholar]
- ASTM C128. Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate; ASTM International: West Conshohocken, PA, USA, 2004. [Google Scholar]
- ASTM C127. Standard Test Method for Specific Gravity and Absorption of Coarse Aggregate; ASTM International: West Conshohocken, PA, USA, 1993. [Google Scholar]
- Ibrahim, M.; Johari, M.A.M.; Rahman, M.K.; Maslehuddin, M. Effect of alkaline activators and binder content on the properties of natural pozzolan-based alkali activated concrete. Constr. Build. Mater. 2017, 147, 648–660. [Google Scholar] [CrossRef]
- ASTM C511. Standard Specification for Mixing Rooms, Moist Cabinets, Moist Rooms, and Water Storage Tanks Used in the Testing of Hydraulic Cements and Concretes; ASTM International: Washington, DC, USA, 2013. [Google Scholar]
- Mukharjee, B.B.; Barai, S.V. Influence of incorporation of nano-silica and recycled aggregates on compressive strength and microstructure of concret. Constr. Build. Mater. 2014, 71, 570–578. [Google Scholar] [CrossRef]
- ASTM C143. Slump of Hydraulic Cement Concrete; ASTM International: West Conshohocken, PA, USA, 1998. [Google Scholar]
- ASTM C642-13. Standard Test Method for Density, Absorption, and Voids in Hardened Concrete; ASTM International: West Conshohocken, PA, USA, 2013. [Google Scholar]
- Poon, C.S.; Kou, S.C.; Lam, L. Influence of recycled aggregate on slump and bleeding of fresh concrete. Mater. Struct. 2007, 40, 981–988. [Google Scholar] [CrossRef]
- BS 1881. Testing Concrete. Methods for Analysis of Hardened Concrete; BSI: London, UK, 2014. [Google Scholar]
- Farzadnia, N.; Ali, A.; Demirboga, R.; Anwar, M.P. Effect of halloysite nanoclay on mechanical properties, thermal behavior and microstructure of cement mortars. Cem. Concr. Res. 2013, 48, 97–104. [Google Scholar] [CrossRef]
- Huang, Y.; He, X.; Wang, Q.; Sun, Y. Mechanical properties of sea sand recycled aggregate concrete under axial compression. Constr. Build. Mater. 2018, 175, 55–63. [Google Scholar] [CrossRef]
- Tamanna, K.; Raman, S.N.; Jamil, M.; Hamid, R. Utilization of wood waste ash in construction technology: A review. Constr. Build. Mater. 2020, 237, 117654. [Google Scholar] [CrossRef]
- Aghabaglou, A.M.; Tuyan, M.; Ramyar, K. Mechanical and durability performance of concrete incorporating fine recycled concrete and glass aggregates. Mater. Struct. 2015, 48, 2629–2640. [Google Scholar] [CrossRef]
- Lei, B.; Li, W.; Tang, Z.; Tam, V.W.; Sun, Z. Durability of recycled aggregate concrete under coupling mechanical loading and freeze-thaw cycle in saltsolution. Constr. Build. Mater. 2018, 163, 840–849. [Google Scholar] [CrossRef]
- Rudić, O.; Ducman, V.; Malešev, M.; Radonjanin, V.; Draganić, S.; Šupić, S.; Radeka, M. Aggregates Obtained by Alkali Activation of Fly Ash: The Effect of Granulation, Pelletization Methods and Curing Regimes. Materials 2019, 12, 776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, X.; Shi, C.; Farzadnia, N.; Hu, X.; Zheng, J. Properties and microstructure of CO2 surface treated cement mortars with subsequent lime-saturated water curing. Cem. Concr. Compos. 2019, 99, 89–99. [Google Scholar] [CrossRef]
Chemical Composition (%) | Cement | Nano-Silica |
---|---|---|
SiO2 | 21.20 | 99.9 |
Al2O3 | 3.41 | - |
Fe2O3 | 2.78 | - |
CaO | 62.32 | - |
MgO | 1.91 | - |
K2O | 0.23 | - |
Other | 8.15 | 0.1 |
Physical properties | ||
density | 3.1 | 2.87 |
Average size | 13.9 micron | 10–14 Nm |
Mix Design | w/c | Cement Kg/m3 | Nano-Silica (%Wt of Cement) | RCA and RCA-NS Kg/m3 | NCA Kg/m3 | Natural Fine Aggregates Kg/m3 |
---|---|---|---|---|---|---|
Control | 0.45 | 400 | 0 | 0 | 1150 | 700 |
RCA-NS 30% | 0.45 | 400 | 0.5 | 345 | 805 | 700 |
RCA-NS 40% | 0.45 | 400 | 0.5 | 460 | 609 | 700 |
RCA-NS 50% | 0.45 | 400 | 0.5 | 575 | 575 | 700 |
RCA-UNS 30% | 0.45 | 400 | 0 | 345 | 805 | 700 |
RCA-UNS 40% | 0.45 | 400 | 0 | 460 | 690 | 700 |
RCA-UNS 50% | 0.45 | 400 | 0 | 575 | 575 | 700 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahbazpanahi, S.; Tajara, M.K.; Faraj, R.H.; Mosavi, A. Studying the C–H Crystals and Mechanical Properties of Sustainable Concrete Containing Recycled Coarse Aggregate with Used Nano-Silica. Crystals 2021, 11, 122. https://doi.org/10.3390/cryst11020122
Shahbazpanahi S, Tajara MK, Faraj RH, Mosavi A. Studying the C–H Crystals and Mechanical Properties of Sustainable Concrete Containing Recycled Coarse Aggregate with Used Nano-Silica. Crystals. 2021; 11(2):122. https://doi.org/10.3390/cryst11020122
Chicago/Turabian StyleShahbazpanahi, Shahriar, Moslem Khalili Tajara, Rabar H. Faraj, and Amir Mosavi. 2021. "Studying the C–H Crystals and Mechanical Properties of Sustainable Concrete Containing Recycled Coarse Aggregate with Used Nano-Silica" Crystals 11, no. 2: 122. https://doi.org/10.3390/cryst11020122
APA StyleShahbazpanahi, S., Tajara, M. K., Faraj, R. H., & Mosavi, A. (2021). Studying the C–H Crystals and Mechanical Properties of Sustainable Concrete Containing Recycled Coarse Aggregate with Used Nano-Silica. Crystals, 11(2), 122. https://doi.org/10.3390/cryst11020122