Twinning Behavior in Cold-Rolling Ultra-Thin Grain-Oriented Silicon Steel
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
3.1. Deformation Twinning Microstructure
3.2. Twinning Behavior in Goss-Oriented Grains during Cold Rolling
3.3. Effect of Goss Orientation Accuracy of Initial Grain on Twinning Behavior
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lobanov, M.L.; Redikul’Tsev, A.A.; Rusakov, G.M.; Kagan, I.V.; Pervushina, O.V. Effect of the grain orientation in the material used for the preparation of an ultrathin electrical steel on its texture and magnetic properties. Phys. Met. Metallogr. 2011, 111, 479–486. [Google Scholar] [CrossRef]
- Moses, A.J. Energy efficient electrical steels: Magnetic performance prediction and optimization. Scripta Mater. 2012, 67, 560–565. [Google Scholar] [CrossRef]
- Gao, X.H.; Qi, K.M.; Qiu, C.L. Magnetic properties of grain oriented ultra-thin silicon steel sheets processed by conventional rolling and cross shear rolling. Mater. Sci. Eng. A 2006, 430, 138–141. [Google Scholar]
- Wang, Y.P.; An, L.Z.; Song, H.Y.; Wang, G.D.; Liu, H.T. Dependence of recrystallization behavior on initial Goss orientation in ultra-thin grain-oriented silicon steels. J. Magn. Magn. Mater. 2020, 499, 166290. [Google Scholar] [CrossRef]
- Liu, H.T.; Yao, S.J.; Sun, Y.; Gao, F.; Song, H.Y.; Liu, G.H.; Li, L.; Geng, D.P.; Liu, Z.Y.; Wang, G.D. Evolution of microstructure, texture and inhibitor along the processing route for grain-oriented electrical steels using strip casting. Mater. Charact. 2015, 106, 273–282. [Google Scholar] [CrossRef]
- Wang, Y.P.; Liu, H.T.; Song, H.Y.; Wang, G.D. Ultra-thin grain-oriented silicon steel sheet fabricated by a novel way: Twin-roll strip casting and two-stage cold rolling. J. Magn. Magn. Mater. 2018, 452, 288–296. [Google Scholar] [CrossRef]
- Song, H.Y.; Liu, H.T.; Wang, Y.P.; Wang, G.D. Microstructure and texture evolution of ultra-thin grain-oriented silicon steel sheet fabricated using strip casting and three-stage cold rolling method. J. Magn. Magn. Mater. 2017, 426, 32–39. [Google Scholar] [CrossRef]
- Nakashima, S.; Takashima, K.; Harase, J. Effect of thickness on secondary recrystallization of Fe-3%Si. Acta Metall. Mater. 1994, 42, 539–547. [Google Scholar] [CrossRef]
- Harase, J.; Shimizu, R.; Takahashi, N. Effect of cold rolling reduction on the secondary recrystallization in 3%Si-Fe alloy. J. Jpn. Inst. Met. 1990, 54, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Arai, K.I.; Ishiyama, K. Rolled texture and magnetic properties of 3% silicon steel. J. Appl. Phys. 1988, 64, 5352–5354. [Google Scholar] [CrossRef]
- Liang, R.Y.; Yang, P.; Mao, W.M. Effect of initial Goss texture sharpness on texture evolution and magnetic properties of Ultra-thin Grain-oriented electrical steel. Acta Metall. Sin. 2017, 30, 895–906. [Google Scholar] [CrossRef]
- Shi, X.J.; Liang, Y.F.; Liu, B.B.; Ding, Z.Y.; Zhang, B.; Ye, F. Deformation twinning characteristics in hot-rolled Fe-6.5wt%Si alloy with different degree of order. Mater. Sci. Eng. A 2019, 762, 138095. [Google Scholar] [CrossRef]
- Xie, J.X.; Fu, H.D.; Zhang, Z.H.; Jiang, Y.B. Deformation twinning in an Fe-6.5 wt.% Si alloy with columnar grains during intermediate temperature compression. Mater. Sci. Eng. A 2012, 538, 315–319. [Google Scholar] [CrossRef]
- Dunn, C.G. Cold-rolled and primary recrystallization textures in cold-rolled single crystals of silicon iron. Acta Metall. 1954, 2, 173–183. [Google Scholar] [CrossRef]
- Rusakov, G.M.; Lobanov, M.L.; Redikul’tsev, A.A.; Kagan, I.V. Specific features of cold deformation of a (110)[001] single crystal of an Fe–3% Si–0.5% Cu alloy related to twinning. Phys. Met. Metallogr. 2011, 111, 530–536. [Google Scholar] [CrossRef]
- Dorner, D.; Zaefferer, S.; Raabe, D. Retention of the Goss orientation between microbands during cold rolling of an Fe3%Si single crystal. Acta Mater. 2007, 55, 2519–2530. [Google Scholar] [CrossRef]
- Yang, P.; Xie, Q.; Meng, L.; Ding, H.; Tang, Z. Dependence of deformation twinning on grain orientation in a high manganese steel. Scripta Mater. 2006, 55, 629–631. [Google Scholar] [CrossRef]
- Hong, C.S.; Tao, N.R.; Lu, K.; Huang, X. Grain orientation dependence of deformation twinning in pure Cu subjected to dynamic plastic deformation. Scripta Mater. 2009, 61, 289–292. [Google Scholar] [CrossRef]
- Jo, S.Y.; Han, J.; Kang, J.H.; Kang, S.; Lee, S.; Lee, Y.K. Relationship between grain size and ductile-to-brittle transition at room temperature in Fe-18Mn-0.6C-1.5Si twinning-induced plasticity steel. J. Alloy Compd. 2015, 627, 374–382. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, M.P.; Jiang, N.; Li, S.M. Orientation analyses for twinning behavior in small-strain hot-rolling process of twin-roll cast AZ31B sheet. Mater. Sci. Eng. A 2010, 527, 6467–6473. [Google Scholar] [CrossRef]
- Jiang, M.G.; Yan, H.; Chen, R.S. Twinning, recrystallization and texture development during multi-directional impact forging in an AZ61 Mg alloy. J. Alloy Compd. 2015, 650, 399–409. [Google Scholar] [CrossRef]
- Fu, H.D.; Zhang, Z.H.; Jiang, Y.B.; Xie, J.X. Applying the grain orientation dependence of deformation twinning to improve the deformation properties of an Fe-6.5 wt%Si alloy. J. Alloy Compd. 2016, 689, 307–312. [Google Scholar] [CrossRef]
- Xie, J.X.; Fu, H.D.; Zhang, Z.H.; Jiang, Y.B. Deformation twinning feature and its effects on significant enhancement of tensile ductility in columnar-grained Fe-6.5wt.%Si alloy at intermediate temperatures. Intermetallics 2012, 23, 20–26. [Google Scholar] [CrossRef]
- Humbert, M.; Petit, B.; Bolle, B.; Gey, N. Analysis of the γ-ε-α’ variant selection induced by 10% plastic deformation in 304 stainless steel at −60 °C. Mater. Sci. Eng. A 2007, 454–455, 508–517. [Google Scholar] [CrossRef]
- Wang, L.N.; Yang, P.; Mao, W.M. Analysis of martensitic transformation during tension of high manganese TRIP steel at high strain rates. Acta Metall. Sin. 2016, 52, 1045–1052. [Google Scholar]
- Wang, L.N.; Yang, P.; Jin, T.; Mao, W.M. Different mechanisms of ε-M and α´-M variant selection and the influencing factors of ε-M reversion during dynamic tension in TRIP steel. Acta Metall. Sin. Eng. Lett. 2016, 26, 1863–1870. [Google Scholar] [CrossRef]
- Walter, J.L.; Hibbard, W.R. Texture of cold-rolled and recrystallized crystal of silicon-iron. Trans Metall. Soc. AIME 1958, 212, 731–737. [Google Scholar]
Twinning System | Schmidt Factor | Mechanical Work | Twinning Orientation |
---|---|---|---|
(112)[11] | 0.48 | 0.167ε33 | (46° 90° 0°) |
(121)[11] | 0.26 | 0.093ε33 | (90° 141° 45°) |
(211)[1] | 0.36 | 0.130ε33 | (106° 116° 8°) |
(21)[1] | 0.26 | 0.093ε33 | (37° 116° 30°) |
(12)[11] | 0.14 | 0.046ε33 | (122° 27° 105°) |
(11)[111] | 0.52 | 0.176ε33 | (105° 64° 83°) |
(21)[1] | 0.46 | 0.167ε33 | (42° 180° 86°) |
(11)[] | 0.14 | 0.046ε33 | (162° 84° 154°) |
(12)[1] | 0.50 | 0.176ε33 | (161° 97° 116°) |
(11)[] | 0.38 | 0.130ε33 | (120° 153° 14°) |
(21)[11] | 0.94 | 0.333ε33 | (136° 90° 90°) |
(21)[11] | 0.52 | 0.185ε33 | (141° 117° 60°) |
Strain | MSF of (0° 45° 0°) | MMW of (0° 45° 0°) | MSF of (0° 35° 0°) | MMW of (0° 35° 0°) |
---|---|---|---|---|
0 | 0.951 | 0.336ε33 | 0.935 | 0.329ε33 |
−0.2 | 0.962 | 0.340ε33 | 0.938 | 0.331ε33 |
−0.4 | 0.989 | 0.350ε33 | 0.948 | 0.336ε33 |
−0.6 | 0.988 | 0.350ε33 | 0.965 | 0.341ε33 |
−0.8 | 0.929 | 0.329ε33 | 0.952 | 0.337ε33 |
−1.0 | 0.845 | 0.298ε33 | 0.887 | 0.313ε33 |
−1.2 | 0.756 | 0.269ε33 | 0.823 | 0.288ε33 |
−1.4 | 0.714 | 0.254ε33 | 0.776 | 0.263ε33 |
−1.6 | 0.710 | 0.251ε33 | 0.739 | 0.242ε33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Meng, L.; Ma, G.; Zhang, N.; Li, G.; Liu, K.; Zhong, S. Twinning Behavior in Cold-Rolling Ultra-Thin Grain-Oriented Silicon Steel. Crystals 2021, 11, 187. https://doi.org/10.3390/cryst11020187
Zhang B, Meng L, Ma G, Zhang N, Li G, Liu K, Zhong S. Twinning Behavior in Cold-Rolling Ultra-Thin Grain-Oriented Silicon Steel. Crystals. 2021; 11(2):187. https://doi.org/10.3390/cryst11020187
Chicago/Turabian StyleZhang, Bo, Li Meng, Guang Ma, Ning Zhang, Guobao Li, Kun Liu, and Sheng Zhong. 2021. "Twinning Behavior in Cold-Rolling Ultra-Thin Grain-Oriented Silicon Steel" Crystals 11, no. 2: 187. https://doi.org/10.3390/cryst11020187
APA StyleZhang, B., Meng, L., Ma, G., Zhang, N., Li, G., Liu, K., & Zhong, S. (2021). Twinning Behavior in Cold-Rolling Ultra-Thin Grain-Oriented Silicon Steel. Crystals, 11(2), 187. https://doi.org/10.3390/cryst11020187