Ultrasound-Assisted Synthesis and Crystal Structure of Novel 2D Cd (II) Metal–Organic Coordination Polymer with Nitrite End Stop Ligand as a Precursor for Preparation of CdO Nanoparticles
Abstract
:1. Introduction
2. Experimental
2.1. Instruments and Materials
2.2. Preparation of 1,2-Bis(1-(pyridin-3-yl)ethylidene)hydrazine) Ligand
2.3. Synthesis of Nano-Structure of [Cd(L)(NO2)2]n
2.4. Synthesis of Isolate Single Crystal of [Cd(L)(NO2)2]n
3. Synthesis of CdO Nanoparticles
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Emhoff, K.A.; Balaraman, L.; Salem, A.M.H.; Mudarmah, K.I.; Boyd, W.C. Coordination chemistry of organic nitric oxide derivatives. Coord. Chem. Rev. 2019, 396, 124–140. [Google Scholar] [CrossRef]
- Liu, X.; Hamon, J.R. Recent developments in penta-, hexa- and heptadentate Schiff base ligands and their metal complexes. Coord. Chem. Rev. 2019, 389, 94–118. [Google Scholar] [CrossRef]
- Mirtamizdoust, B. Sonochemical synthesis of nano lead(II) metal-organic coordination polymer; New precursor for the preparation of nano-materials. Ultrason Sonochem. 2017, 35, 263–269. [Google Scholar] [CrossRef]
- Rasheed, T.; Hassan, A.A.; Bilal, M.; Hussain, T.; Rizwan, K. Metal-organic frameworks based adsorbents: A review from removal perspective of various environmental contaminants from wastewater. Chemosphere. 2020, 259, 127369. [Google Scholar] [CrossRef]
- Engel, E.R.; Scott, J.L. Advances in the green chemistry of coordination polymer materials. Green Chem. 2020, 22, 3693–3715. [Google Scholar] [CrossRef]
- Mishra, A.; Jo, J.H.; Kim, H.; Woo, S.; Chi, K.W. A Discrete Cobalt Complex Obtained from a 1D Coordination Polymer for Highly Selective Sensing of the Mercury (II) Ion. ChemPlusChem 2014, 79, 925–928. [Google Scholar] [CrossRef]
- Guo, Y.; Hu, X.; Zhang, X.; Pu, X.; Wang, Y. The synthesis of a Cu(II) Schiff base complex using a bidentate N2O2 donor ligand: Crystal structure, photophysical properties, and antibacterial activities. RSC Adv. 2019, 9, 41737. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Liu, X.; Ge, X.; Wang, Q.; Xie, Y.; Hao, Y.; Zhang, Y.; Zhang, L.; Shang, W.; Liu, Z. Lysosome-targeted iridium(III) compounds with pyridine-triphenylamine Schiff base ligands: Syntheses, antitumor applications and mechanisms. Inorg. Chem. Front. 2020, 7, 91–100. [Google Scholar] [CrossRef]
- Che, C.M.; Huang, J.S. Metal complexes of chiral binaphthyl Schiff-base ligands and their application in stereoselective organic transformations. Coord. Chem. Rev. 2003, 242, 97–113. [Google Scholar] [CrossRef]
- Himed, Y.; Komatsuzaki, N.O.; Sugihara, H.; Arakawa, H.; Kasuga, K. Transfer hydrogenation of a variety of ketones catalyzed by rhodium complexes in aqueous solution and their application to asymmetric reduction using chiral Schiff base ligands. J. Mol. Catal A Chem. 2003, 195, 95–100. [Google Scholar] [CrossRef]
- Miroslaw, B. Homo-and Hetero-Oligonuclear Complexes of Platinum Group Metals (PGM) Coordinated by Imine Schiff Base Ligands. Int. J. Mol. Sci. 2020, 21, 3493. [Google Scholar] [CrossRef]
- Vigato, P.A.; Tamburini, S. The challenge of cyclic and acyclic Schiff bases and related derivatives. Coord. Chem. Rev. 2004, 248, 1717–2128. [Google Scholar] [CrossRef]
- Leovac, V.M.; Jevtovic, V.S.; Jovanovic, L.S.; Bogdanovic, G.A. Metal complexes with Schiff-base ligands—Pyridoxal and semicarbazide-based derivatives. J. Serb. Chem. Soc. 2005, 70, 393–422. [Google Scholar] [CrossRef]
- Wilkinson, S.M.; Sheedy, T.M.; New, E.J. Synthesis and Characterization of Metal Complexes with Schiff Base Ligands. J. Chem. Educ. 2016, 93, 351−354. [Google Scholar] [CrossRef]
- Masoomi, M.Y.; Morsali, A. Applications of metal–organic coordination polymers as precursors for preparation of nano-materials. Coord. Chem. Rev. 2012, 256, 2921–2943. [Google Scholar] [CrossRef]
- Malik, M.A.; O’Brien, P. Organometallic and Metallo-Organic Precursors for Nanoparticles. In Precursor Chemistry of Advanced Materials; Springer: Berlin/Heidelberg, Germany, 2005; p. 173. [Google Scholar]
- Leong, W.L.; Vittal, J.J. One-Dimensional Coordination Polymers: Complexity and Diversity in Structures, Properties, and Applications. Chem. Rev. 2010, 111, 688–764. [Google Scholar] [CrossRef]
- Vittal, J.J.; Ng, M.T. Chemistry of Metal Thio- and Selenocarboxylates: Precursors for Metal Sulfide/Selenide Materials, Thin Films, and Nanocrystals. Acc. Chem. Res. 2006, 39, 869–877. [Google Scholar] [CrossRef] [PubMed]
- Das, K.; Datta, A.; Massera, C.; Sinha, C. Structural diversity, topology and luminescent properties of a two-dimensional Cd(II) coordination polymer incorporating 4,4′-dipyridyl and 4,4′-sulfonyldibenzoic. J. Mol. Struct. 2019, 1179, 618–622. [Google Scholar] [CrossRef]
- Yadav, C.L.; Anamika; Rajput, G.; Kumar, K.; Drew, M.G.B.; Singh, N. Effect of Substituents on the Crystal Structures, Optical Properties, and Catalytic Activity of Homoleptic Zn(II) and Cd(II) β-oxodithioester Complexes. Inorg. Chem. 2020, 59, 11417–11431. [Google Scholar] [CrossRef] [PubMed]
- Dutta, B.; Jana, R.; Sinha, C.; Ray, P.P.; Mir, M.H. Synthesis of Cd(II) based 1D coordination polymer by in situ ligand generation and fabrication of photosensitive electronic device. Inorg. Chem. Front. 2018, 5, 1998–2005. [Google Scholar] [CrossRef]
- Mirtamizdoust, B.; Hanifehpour, Y.; Behzadfar, E.; Roodsari, M.S.; Jung, J.H.; Joo, S.W. A novel nano-structured three-dimensional supramolecular metal-organic framework for cadmium (II): A new precursor for producing nano cadmium oxide. J. Mol. Struct. 2020, 1201, 127191. [Google Scholar] [CrossRef]
- Hanifehpour, Y.; Morsali, A.; Mirtamizdoust, B.; Joo, S.W. Sonochemical synthesis of tri-nuclear lead(II)-azido nano rods coordination polymer with 3,4,7,8-tetramethyl-1,10-phenanthroline (tmph): Crystal structure determination and preparation of nano lead(II) oxide. J. Mol. Struct. 2015, 1079, 67–73. [Google Scholar] [CrossRef]
- Hanifehpour, Y.; Mirtamizdoust, B.; Hatami, M.; Khomami, B.; Joo, S.W. Synthesis and structural characterization of new bismuth (III) nano coordination polymer: A precursor to produce pure phase nano-sized bismuth (III) oxide. J. Mol. Struct. 2015, 1091, 43–48. [Google Scholar] [CrossRef]
- Hanifehpour, Y.; Morsali, A.; Soltani, B.; Mirtamizdoust, B.; Joo, S.W. Ultrasound-assisted fabrication of a novel nickel(II)-bis-pyrazolyl borate twonuclear discrete nano-structured coordination compound. Ultrason Sonochem. 2017, 34, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Hammud, H.H.; Kortz, U.; Bhattacharya, S.; Demirdjian, S.; Hariri, E.; Isber, S.; Choi, E.S.; Mirtamizdoust, B.; Mroueh, M.; Daher, C.F. Structure, DFT studies, Magnetism and Biological activity of Bis[(μ 2-azido)-chloro-(1,10-phenanthroline)-copper(II)] complex. Inorganica Chim. Acta. 2020, 506, 119533. [Google Scholar] [CrossRef]
- Kravtsov, V.C.; Lozovan, V.; Siminel, N.; Coropceanu, E.B.; Kulikova, O.V.; Costriucova, N.V.; Fonari, M.S. Fonari, From 1D to 2D Cd(II) and Zn(II) coordination networks by replacing monocarboxylate with dicarboxylates in partnership with azine ligands: Synthesis, crystal structures, inclusion, and emission properties. Polyhedron 2020, 180, 114411. [Google Scholar] [CrossRef]
- Mercury 2.4, Copyright Cambridge Crystallographic Data Centre: 12 Union Road. Cambridge, UK; pp. 2001–2010.
- Oxford Diffraction. CrysAlis RED and CrysAlis CCD software (Ver. 1.171.32.5); Oxford Diffraction Ltd.: Abingdon, Oxfordshire, UK, 2010. [Google Scholar]
- Pal, A.; Chand, S.; Elahi, S.M.; Das, M.C. A microporous MOF with a polar pore surface exhibiting excellent selective adsorption of CO2 from CO2–N2 and CO2–CH4 gas mixtures with high CO2 loading. Dalton Trans. 2017, 46, 15280–15286. [Google Scholar] [CrossRef]
- Dong, Y.B.; Smith, M.D.; Loye, H.C.Z. New Inorganic/Organic Coordination Polymers Generated from Bidentate Schiff-Base Ligands. Inorg. Chem. 2000, 39, 4927–4935. [Google Scholar] [CrossRef]
- Harrowfield, J.M.; Miyamae, H.; Skelton, B.W.; Soudi, A.A.; White, A.H. Lewis-Base Adducts of Lead (II) Compounds. XX. Synthesis and Structure of the 1:1 Adduct of Pyridine With Lead (II) Thiocyanate. Aust. J. Chem. 1996, 49, 1165–1169. [Google Scholar] [CrossRef]
- Patterson, A.L. The Scherrer formula for X-ray particle size determination. Phys. Rev. 1939, 56, 978. [Google Scholar] [CrossRef]
- Gao, E.Q.; Cheng, A.L.; Xu, Y.X.; Yan, C.H.; He, M.Y. New Inorganic–Organic Hybrid Supramolecular Architectures Generated from 2, 5-Bis (3-pyridyl)-3, 4-diaza-2, 4-hexadiene. Cryst. Growth Des. 2005, 5, 1005–1011. [Google Scholar] [CrossRef]
- Lee, G.H.; Wang, H.T. Synthesis and Crystal Structure of a Three-Dimensional Nickel (II) Coordination Polymer with 1, 4-Bis (3-pyridyl)-2, 3-diazo-1, 3-butadiene as a Ligand. Anal. Sci. X-ray Struct. Anal. Online 2007, 23, x1–x2. [Google Scholar] [CrossRef] [Green Version]
- Soltanzadeh, N.; Morsali, A. Metal–organic supramolecular assemblies generated from bismuth (III) bromide and polyimine ligands. Polyhedron 2009, 28, 703–710. [Google Scholar] [CrossRef]
- Khanpour, M.; Morsali, A. Solid state crystal-to-crystal transformation from a monomeric structure to 1-D coordination polymers on anion exchange. CrystEngComm 2009, 11, 2585–2587. [Google Scholar] [CrossRef]
- Mahmoudi, G.; Morsali, A. Three new HgII metal–organic polymers generated from 1, 4-bis (n-pyridyl)-3, 4-diaza-2, 4-hexadiene ligands. Inorg. Chim. Acta 2009, 362, 3238–3246. [Google Scholar] [CrossRef]
- Velusamy, P.; Ramesh Babu, R.; Ramamurthi, K.; Elangovan, E.; Viegas, J.; Dahlem, M.S.; Arivanandhan, M. Characterization of spray pyrolytically deposited high mobility praseodymium doped CdO thin films. Ceram. Int. 2016, 42, 12675–12685. [Google Scholar] [CrossRef]
Chemical Formula | C14H14CdN6O4 |
---|---|
Mr | 442.7 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 120 |
a, b, c (Å) | 4.5208 (1), 16.2510 (2), 22.0539 (4) |
V (Å3) | 1620.25 (5) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 11.12 |
Crystal size (mm) | 0.38 × 0.10 × 0.03 |
Diffractometer | Goniometer Xcalibur, detector: Atlas (Gemini ultra Cu) |
Absorption correction | Analytical CrysAlis PRO, Agilent Technologies (2010), Analytical numeric absorption correction using a multifaceted crystal model |
Tmin, Tmax | 0.181, 0.723 |
No. of measured, idenpendent and observes [1 > 2σ(1) reflections | 20706, 2895, 2742 |
Rint | 0.039 |
(sinθ/λ)max(Å−1) | 0.598 |
Refinement R[F2 > 2σ(F2)], wR(F2), S | 0.020, 0.057, 1.13 |
No. of reflections | 2895 |
No. of parameters | 227 |
H-atom treatment | H-atom parameters constrained |
Δ›max, Δ›min (e Å−3) | 0.30, −0.37 |
1.234 (4) | O2—N5 | 2.390 (2) | Cd1—O1 |
---|---|---|---|
1.252 (5) | O3—N6 | 2.368(2) | Cd1—O3 |
1.255 (5) | O4—N6 | 2.470(2) | Cd1—O2 |
1.335 (5) | N1—C1 | 2.389(2) | Cd1—O4 |
1.340 (5) | N1—C5 | 2.328 (2) | Cd1—O1i |
1.397 (5) | N2—N3 | 2.358 (2) | Cd1—N1i |
1.291 (5) | N2—C6 | 2.356 (2) | Cd1—N4 |
1.346 (5) | N4—C12 | 1.288 (5) | N3—C8 |
120.2 (2) | Cd1ii—N1—C5 | 1.339 (5) | N4—C11 |
154.44 (9) | N1i—Cd1—N4 | 87.27 (11) | O1—Cd1—N1i |
121.9 (2) | Cd1ii—N1—C1 | 89.09 (10) | O1—Cd1—N4 |
D-H...A | d(D-H) | d(H...A) | d(D...A) | <(DHA) |
---|---|---|---|---|
C(13)-H(13)...O(4) | 0.96 | 2.525 | 3.237(4) | 130.9 |
C(13)-H(7)...C(12) | 0.96 | 2.708 | 2.789(4) | 155.5 |
C(4)-H(4)...O(3) | 0.95 | 2.572 | 3.442(5) | 151.2 |
C(1)-H(1)...N(5) | 0.96 | 2.514 | 3.328(4) | 142.6 |
C(5)-H(5)...O(3) | 0.95 | 2.641 | 3.674(5) | 145.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanifehpour, Y.; Dadashi, J.; Mirtamizdoust, B. Ultrasound-Assisted Synthesis and Crystal Structure of Novel 2D Cd (II) Metal–Organic Coordination Polymer with Nitrite End Stop Ligand as a Precursor for Preparation of CdO Nanoparticles. Crystals 2021, 11, 197. https://doi.org/10.3390/cryst11020197
Hanifehpour Y, Dadashi J, Mirtamizdoust B. Ultrasound-Assisted Synthesis and Crystal Structure of Novel 2D Cd (II) Metal–Organic Coordination Polymer with Nitrite End Stop Ligand as a Precursor for Preparation of CdO Nanoparticles. Crystals. 2021; 11(2):197. https://doi.org/10.3390/cryst11020197
Chicago/Turabian StyleHanifehpour, Younes, Jaber Dadashi, and Babak Mirtamizdoust. 2021. "Ultrasound-Assisted Synthesis and Crystal Structure of Novel 2D Cd (II) Metal–Organic Coordination Polymer with Nitrite End Stop Ligand as a Precursor for Preparation of CdO Nanoparticles" Crystals 11, no. 2: 197. https://doi.org/10.3390/cryst11020197
APA StyleHanifehpour, Y., Dadashi, J., & Mirtamizdoust, B. (2021). Ultrasound-Assisted Synthesis and Crystal Structure of Novel 2D Cd (II) Metal–Organic Coordination Polymer with Nitrite End Stop Ligand as a Precursor for Preparation of CdO Nanoparticles. Crystals, 11(2), 197. https://doi.org/10.3390/cryst11020197