Ultrafast Laser-Induced Crystallization of Lead Germanate Glass
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Crystallization Properties of the Studied Glass
3.2. Laser-Induced Crystallization
3.3. Confocal Raman Spectroscopy of the Laser-Induced Crystalline Tracks
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Komatsu, T. Design and control of crystallization in oxide glasses. J. Non-Cryst. Solids 2015, 428, 156–175. [Google Scholar] [CrossRef]
- Komatsu, T.; Honma, T. Laser patterning and growth mechanism of orientation designed crystals in oxide glasses: A review. J. Solid State Chem. 2019, 275, 210–222. [Google Scholar] [CrossRef]
- Gattass, R.R.; Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photon 2008, 2, 219–225. [Google Scholar] [CrossRef]
- Stone, A.; Jain, H.; Dierolf, V.; Sakakura, M.; Shimotsuma, Y.; Miura, K.; Hirao, K.; Lapointe, J.; Kashyap, R. Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics. Sci. Rep. 2015, 5, 10391. [Google Scholar] [CrossRef] [PubMed]
- Lipatiev, A.S.; Lipateva, T.O.; Lotarev, S.V.; Okhrimchuk, A.G.; Larkin, A.S.; Presnyakov, M.Y.; Sigaev, V.N. Direct Laser Writing of LaBGeO5 Crystal-in-Glass Waveguide Enabling Frequency Conversion. Cryst. Growth Des. 2017, 17, 4670–4675. [Google Scholar] [CrossRef]
- Gupta, P.; Jain, H.; Williams, D.B.; Honma, T.; Benino, Y.; Komatsu, T. Creation of Ferroelectric, Single-Crystal Architecture in Sm0.5La0.5BGeO5 Glass. J. Am. Ceram. Soc. 2007, 91, 110–114. [Google Scholar] [CrossRef]
- Stone, A.; Sakakura, M.; Shimotsuma, Y.; Stone, G.; Gupta, P.; Miura, K.; Hirao, K.; Dierolf, V.; Jain, H. Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation. Opt. Express 2009, 17, 23284–23289. [Google Scholar] [CrossRef]
- Stone, A.; Sakakura, M.; Shimotsuma, Y.; Miura, K.; Hirao, K.; Dierolf, V.; Jain, H. Unexpected influence of focal depth on nucleation during femtosecond laser crystallization of glass. Opt. Mater. Express 2011, 1, 990–995. [Google Scholar] [CrossRef]
- Nishii, A.; Shinozaki, K.; Honma, T.; Komatsu, T. Morphology and orientation of β-BaB2O4 crystals patterned by laser in the inside of samarium barium borate glass. J. Solid State Chem. 2015, 221, 145–151. [Google Scholar] [CrossRef]
- Honma, T.; Komatsu, T.; Benino, Y. Patterning of c-axis-oriented Ba2TiX2O8 (X = Si, Ge) crystal lines in glass by laser irradiation and their second-order optical nonlinearities. J. Mater. Res. 2008, 23, 885–888. [Google Scholar] [CrossRef]
- Zhu, B.; Dai, Y.; Ma, H.; Zhang, S.; Qiu, J. Direct writing Eu3+-doped Ba2TiSi2O8 crystalline pattern by femtosecond laser irradiation. J. Alloy. Compd. 2008, 460, 590–593. [Google Scholar] [CrossRef]
- Lipatiev, A.S.; Moiseev, I.A.; Lotarev, S.V.; Lipateva, T.O.; Presnyakov, M.Y.; Fedotov, S.S.; Sigaev, V.N. Growth of Fresnoite Single Crystal Tracks Inside Glass Using Femtosecond Laser Beam Followed by Heat Treatment. Cryst. Growth Des. 2018, 18, 7183–7190. [Google Scholar] [CrossRef]
- Lotarev, S.V.; Lipatiev, A.S.; Lipateva, T.O.; Fedotov, S.S.; Naumov, A.S.; Moiseev, I.A.; Sigaev, V.N. Ultrafast-laser vitrification of laser-written crystalline tracks in oxide glasses. J. Non-Cryst. Solids 2019, 516, 1–8. [Google Scholar] [CrossRef]
- Mazurin, O.V.; Streltsina, M.V.; Shvaiko-Shvaikovskaya, T.P. Properties of Glasses and Glassforming Melts, Reference Book; Part 2; Nauka: Leningrad, Russia, 1993. (In Russian) [Google Scholar]
- Venevtsev, Y.N.; Bush, A.A.; Shashkov, A.Y.; Chetchkin, V.V.; Hertsen, N.P.; Stefanovich, S.Y.; Rannev, N.V. Lead tetragermanate crystals: Polymorphism, crystal structure and properties. Ferroelectrics 1982, 45, 203–209. [Google Scholar] [CrossRef]
- Iwasaki, H. Ferroelectric and optical properties of Pb5Ge3O11 and its isomorphous compound Pb5Ge2SiO11. J. Appl. Phys. 1972, 43, 4907–4915. [Google Scholar] [CrossRef]
- Hasegawa, H.; Shimada, M.; Koizumi, M. Phase relations and crystallization of glass in system PbO-GeO2. J. Mater. Sci. 1973, 8, 1725–1730. [Google Scholar] [CrossRef]
- Nassau, K.; Shiever, J.; Joy, D.; Glass, A. The crystallization of vitreous and metastable Pb5Ge3O11. J. Cryst. Growth 1977, 42, 574–578. [Google Scholar] [CrossRef]
- Lan, G.-X.; Sun, H.-Y.; Yin, Z.-Y.; Wang, J.-Y.; Wang, H.-F. Raman Spectroscopic Study of Amorphous Pb5Ge3O11 and Its Crystallization. Phys. Status Solidi 1991, 164, 39–44. [Google Scholar] [CrossRef]
- Sigaev, V.N.; Gregora, I.; Pernice, P.; Champagnon, B.; Smelyanskaya, E.N.; Aronne, A.; Sarkisov, P.D. Structure of lead germanate glasses by Raman spectroscopy. J. Non-Cryst. Solids 2001, 279, 136–144. [Google Scholar] [CrossRef]
- Scavini, M.; Tomasi, C.; Speghini, A.; Bettinelli, M. Stable and Metastable Phases within the GeO2-Rich Part of the Binary PbO–GeO2 System. J. Mater. Synth. Process. 2001, 9, 93–102. [Google Scholar] [CrossRef]
- Stefanovich, S.Y.; Sigaev, V.N. Application of the optical second harmonic generation method in the study of the crystal-lization of noncetrosymmetric phases in glasses. Glass Phys. Chem. 1995, 21, 253–262. [Google Scholar]
- Viennois, R.; Kityk, I.; Majchrowski, A.; Żmija, J.; Mierczyk, Z.; Papet, P. Influence of Cr3+ doping on the enhanced dielectric and nonlinear optical features of pyroelectric Pb5Ge3O11 single crystals. Mater. Chem. Phys. 2018, 213, 461–471. [Google Scholar] [CrossRef]
- Lotarev, S.; Fedotov, S.; Lipatiev, A.; Presnyakov, M.; Kazansky, P.; Sigaev, V. Light-driven nanoperiodical modulation of alkaline cation distribution inside sodium silicate glass. J. Non-Cryst. Solids 2018, 479, 49–54. [Google Scholar] [CrossRef]
- Lipateva, T.O.; Lotarev, S.V.; Lipatiev, A.S.; Kazansky, P.G.; Sigaev, V.N. Formation of crystalline dots and lines in lanthanum borogermanate glass by the low pulse repetition rate femtosecond laser. Photonics Devices Syst. VI 2015, 9450, 945018. [Google Scholar] [CrossRef]
- Cao, J.; Lancry, M.; Brisset, F.; Mazerolles, L.; Saint-Martin, R.; Poumellec, B. Femtosecond Laser-Induced Crystallization in Glasses: Growth Dynamics for Orientable Nanostructure and Nanocrystallization. Cryst. Growth Des. 2019, 19, 2189–2205. [Google Scholar] [CrossRef]
- Soni, R.K.; Jain, K.P. High pressure raman scattering in Pb5Ge3O11. Pramana 1986, 27, 707–712. [Google Scholar] [CrossRef]
- Müller-Lierheim, W.; Suski, T.; Otto, H.H. Factor group analysis of the Raman spectrum of Pb5Ge3O11. Phys. Status Solidi (b) 1977, 80, 31–41. [Google Scholar] [CrossRef]
- Lockwood, D.J.; Hosea, T.J.; Taylor, W. The complete Raman spectrum of paraelectric and ferroelectric lead germanate. J. Phys. C: Solid State Phys. 1980, 13, 1539–1553. [Google Scholar] [CrossRef]
- Zahra, A.-M.; Zahra, C.; Piriou, B. DSC and Raman studies of lead borate and lead silicate glasses. J. Non-Cryst. Solids 1993, 155, 45–55. [Google Scholar] [CrossRef]
- Stone, A.; Sakakura, M.; Shimotsuma, Y.; Miura, K.; Hirao, K.; Dierolf, V.; Jain, H. Femtosecond laser-writing of 3D crystal architecture in glass: Growth dynamics and morphological control. Mater. Des. 2018, 146, 228–238. [Google Scholar] [CrossRef]
- Fernandez, T.; Sakakura, M.; Eaton, S.; Sotillo, B.; Siegel, J.; Solis, J.; Shimotsuma, Y.; Miura, K. Bespoke photonic devices using ultrafast laser driven ion migration in glasses. Prog. Mater. Sci. 2018, 94, 68–113. [Google Scholar] [CrossRef]
- Wagstaff, F.E. Crystallization and Melting Kinetics of Cristobalite. J. Am. Ceram. Soc. 1969, 52, 650–654. [Google Scholar] [CrossRef]
- McAnany, S.D.; Veenhuizen, K.J.; Kiss, A.M.; Thieme, J.; Nolan, D.A.; Aitken, B.G.; Dierolf, V.; Jain, H. Evolution of glass structure during femtosecond laser assisted crystallization of LaBGeO5 in glass. J. Non-Cryst. Solids 2021, 551, 120396. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lotarev, S.V.; Lipatiev, A.S.; Lipateva, T.O.; Lopatina, E.V.; Sigaev, V.N. Ultrafast Laser-Induced Crystallization of Lead Germanate Glass. Crystals 2021, 11, 193. https://doi.org/10.3390/cryst11020193
Lotarev SV, Lipatiev AS, Lipateva TO, Lopatina EV, Sigaev VN. Ultrafast Laser-Induced Crystallization of Lead Germanate Glass. Crystals. 2021; 11(2):193. https://doi.org/10.3390/cryst11020193
Chicago/Turabian StyleLotarev, Sergey V., Alexey S. Lipatiev, Tatiana O. Lipateva, Elena V. Lopatina, and Vladimir N. Sigaev. 2021. "Ultrafast Laser-Induced Crystallization of Lead Germanate Glass" Crystals 11, no. 2: 193. https://doi.org/10.3390/cryst11020193
APA StyleLotarev, S. V., Lipatiev, A. S., Lipateva, T. O., Lopatina, E. V., & Sigaev, V. N. (2021). Ultrafast Laser-Induced Crystallization of Lead Germanate Glass. Crystals, 11(2), 193. https://doi.org/10.3390/cryst11020193