Halogen-Bonding-Driven Self-Assembly of Solvates of Tetrabromoterephthalic Acid
Abstract
:1. Introduction
2. Experimental Setup
2.1. Materials and Methods
2.2. Synthesis and Crystallization of H2Br4tp·2MeCN (1MeCN)
2.3. Synthesis and Crystallization of H2Br4tp·2MeOH (2MeOH)
2.4. X-ray Crystallography
3. Results and Discussion
3.1. Structural Description
3.2. Hirshfeld Surface Analysis
3.3. Thermal Analysis and Structural Transformation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tiekink, E.R.T.; Vittal, J.J.; Zaworotko, M. (Eds.) Organic Crystal Engineering: Frontiers in Crystal Engineering; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Tiekink, E.R.T.; Zukerman-Schpector, J. (Eds.) The Importance of π-Interactions in Crystal Engineering: Frontiers in Crystal Engineering, 2nd ed.; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Desiraju, G.R. Crystal Engineering: The Design of Organic Solids; Elsevier: Amsterdam, The Netherlands, 1989. [Google Scholar]
- Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The halogen bond. Chem. Rev. 2016, 116, 2478–2601. [Google Scholar] [CrossRef] [Green Version]
- Gilday, L.C.; Robinson, S.W.; Barendt, T.A.; Langton, M.J.; Mullaney, B.R.; Beer, P.D. Halogen bonding in supramolecular chemistry. Chem. Rev. 2015, 115, 7118–7195. [Google Scholar] [CrossRef]
- Metrangolo, P.; Neukirch, H.; Pilati, T.; Resnati, G. Halogen bonding based recognition processes: A world parallel to hydrogen bonding. Acc. Chem. Res. 2005, 38, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Politzer, P.; Murray, J.S.; Clark, T. Halogen bonding: An electrostatically-driven highly directional noncovalent interaction. Phys. Chem. Chem. Phys. 2010, 12, 7748–7757. [Google Scholar] [CrossRef] [PubMed]
- Cavallo, G.; Metrangolo, P.; Pilati, T.; Resnati, G.; Sansotera, M.; Terraneo, G. Halogen bonding: A general route in anion recognition and coordination. Chem. Soc. Rev. 2010, 39, 3772–3783. [Google Scholar] [CrossRef] [PubMed]
- Priimagi, A.; Cavallo, G.; Metrangolo, P.; Resnati, G. The halogen bond in the design of functional supramolecular materials: Recent advances. Acc. Chem. Res. 2013, 46, 2686–2695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, A.; Tothadi, S.; Desiraju, G.R. Halogen bonds in crystal engineering: Like hydrogen bonds yet different. Acc. Chem. Res. 2014, 47, 2514–2524. [Google Scholar] [CrossRef] [PubMed]
- Pop, L.; Grosu, I.G.; Miclăus, M.; Hădade, N.D.; Pop, A.; Bende, A.; Terec, A. Barboiu, M.; Grosu, I. Halogen-bonded organic frameworks of perfluoroiodo- and perfluorodiiodobenzene with 2,2′,7,7′-tetrapyridyl-9,9′-spirobifluorene. Cryst. Growth Des. 2021, 21, 1045–1054. [Google Scholar] [CrossRef]
- Dong, J.; Han, X.; Lui, Y.; Li, H.; Cui, Y. Metal-covalent organic frameworks (MCOFs): A bridge between metal-organic frameworks and covalent organic frameworks. Angew. Chem. Int. Ed. 2020, 59, 13722–13733. [Google Scholar] [CrossRef]
- Liu, P.; Li, Z.; Shi, B.; Liu, J.; Zhu, H.; Huang, F. Formation of linear side-chain polypseudorotaxane with supramolecular polymer backbone through neutral halogen bonds and pillar[5]arene-based host-guest interactions. Chem. Eur. J. 2018, 24, 4264–4267. [Google Scholar] [CrossRef]
- Liu, C.-Z.; Koppireddi, S.; Wang, H.; Zhang, D.-W.; Li, Z.-T. Halogen bonding directed supramolecular quadruple and double helices from hydrogen-bonded arylamide foldamers. Angew. Chem. Int. Ed. 2019, 58, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Schwabedissen, J.; Trapp, P.C.; Stammler, H.-G.; Neumann, B.; Lamm, J.-H.; Vishnevskiy, Y.V.; Körte, L.A.; Mitzel, N.W. Halogen bonds of halotetrafluoropyridines in crystals and co-crystals with benzene and pyridine. Chem. Eur. J. 2019, 25, 7339–7350. [Google Scholar] [CrossRef] [PubMed]
- Ji, B.; Zhang, D.; Liang, R.; Kang, G.; Zhu, Q.; Deng, D. Selective binding and removal of aromatic guests in a porous halogen-bonded organic framework. Cryst. Growth Des. 2021, 21, 482–489. [Google Scholar] [CrossRef]
- Dey, S.K.; Saha, R.; Biswas, S.; Layek, A.; Middya, S.; Steele, I.M.; Fleck, M.; Ray, P.P.; Kumar, S. Tetrabromoterepthalic acid in designing co-crystals and salts: Modification of optical properties and Schottky barrier effect. Cryst. Growth Des. 2014, 14, 207–221. [Google Scholar] [CrossRef]
- Bruker. APEX3, SAINT and SADABS; Bruker AXS Inc.: Madison, WI, USA, 2016. [Google Scholar]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Bondi, A. van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441–451. [Google Scholar] [CrossRef]
- Etter, M.C.; MacDonald, J.C.; Bernstein, J. Graph-set analysis of hydrogen-bond patterns in organic crystals. Acta Crystallogr. Sect. B Struct. Sci. 1990, 46, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Chongboriboon, N.; Samakun, K.; Inprasit, T.; Kielar, F.; Dungkaew, W.; Wong, L.W.-Y.; Sung, H.H.-Y.; Ninković, D.B.; Zarić, S.D.; Chainok, K. Two-dimensional halogen-bonded organic frameworks based on the tetrabromobenzene-1,4-dicarboxylic acid building molecule. CrystEngComm 2020, 22, 24–34. [Google Scholar] [CrossRef]
- Janiak, C. A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands. J. Chem. Soc. Dalton Trans. 2000, 3885–3896. [Google Scholar] [CrossRef]
- Spek, A.L. Platon Squeeze: A tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 9–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun. 2007, 3814–3816. [Google Scholar] [CrossRef]
- Spackman, M.A.; McKinnon, J.J. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 2002, 4, 378–392. [Google Scholar] [CrossRef]
- Turner, M.J.; Mckinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer17; The University of Western Australia: Crawley, Australia, 2017. [Google Scholar]
Compound | H2Br4tp·2MeCN (1MeCN) | H2Br4tp·2MeOH (2MeOH) |
---|---|---|
Empirical formula | C12H8Br4N2O4 | C10H10Br4O6 |
Formula weight | 563.84 | 545.82 |
Temperature (K) | 296(2) | 296(2) |
Crystal system | Triclinic | Monoclinic |
Space group | P-1 | P21/c |
a (Å) | 6.1577(6) | 11.8461(11) |
b (Å) | 8.3463(8) | 9.2213(8) |
c (Å) | 9.2327(9) | 15.1000(14) |
α (°) | 68.241(3) | 90 |
β (°) | 78.863(4) | 107.840(3) |
γ (°) | 84.436(4) | 90 |
V (Å3) | 432.23(7) | 1570.2(2) |
Z | 1 | 4 |
ρcalc (g/cm3) | 2.166 | 2.309 |
µ (mm−1) | 9.327 | 10.271 |
F(000) | 266 | 1032 |
λ (Å) | 0.71073 (Mo-Kα) | 0.71073 (Mo-Kα) |
θ range (°) | 3.4–32.1 | 2.8–32.1 |
Reflections collected | 17952 | 50246 |
Independent reflections | 3149 | 5490 |
Rint, Rsigma | 0.0566, 0.0429 | 0.0968, 0.0650 |
Data/restraints/parameters | 3149/1/106 | 5490/4/200 |
Goodness-of-fit on F2 | 1.028 | 1.025 |
R1, wR2 [I > 2σ(I)] | 0.0427, 0.0731 | 0.0519, 0.0944 |
R1, wR2 [all data] | 0.0909, 0.0871 | 0.1189, 0.1167 |
Δρmax, Δρmin (e Å−3) | 0.57, −0.69 | 0.93, −1.14 |
CCDC number | 2005667 | 2005668 |
C−Br···X | d(Br···X) (Å) | ∠(C−Br···X) (°) | Symmetry Code |
---|---|---|---|
1MeCN | |||
C3–Br1···Br2 | 3.9434(7) | 85.26(10) | −x, −y, 1 − z |
C4–Br2···O2 | 3.270(3) | 155.24(11) | x, y, z − 1 |
2MeOH | |||
C3–Br1···O4 | 3.087(4) | 173.41(14) | 1 − x, 1/2 + y, 3/2 − z |
C4–Br2···O1 | 3.043(3) | 177.69(15) | 1 − x, 1/2 + y, 3/2 − z |
C4–Br2···Br3 | 3.7233(7) | 89.77(13) | x, 1/2 − y, z + 1/2 |
C4–Br2···Br4 | 3.8507(8) | 119.49(13) | x, 1/2 − y, z + 1/2 |
C8–Br3···Br1 | 3.7989(7) | 176.35(13) | x, 1/2 − y, z − 1/2 |
C8–Br3···Br3 | 3.7994(11) | 77.52(13) | 1 − x, −y, 1 − z |
C8–Br3···Br4 | 3.8871(8) | 103.15(13) | 1 − x, −y, 1 − z |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chongboriboon, N.; Samakun, K.; Dungkaew, W.; Kielar, F.; Sukwattanasinitt, M.; Chainok, K. Halogen-Bonding-Driven Self-Assembly of Solvates of Tetrabromoterephthalic Acid. Crystals 2021, 11, 198. https://doi.org/10.3390/cryst11020198
Chongboriboon N, Samakun K, Dungkaew W, Kielar F, Sukwattanasinitt M, Chainok K. Halogen-Bonding-Driven Self-Assembly of Solvates of Tetrabromoterephthalic Acid. Crystals. 2021; 11(2):198. https://doi.org/10.3390/cryst11020198
Chicago/Turabian StyleChongboriboon, Nucharee, Kodchakorn Samakun, Winya Dungkaew, Filip Kielar, Mongkol Sukwattanasinitt, and Kittipong Chainok. 2021. "Halogen-Bonding-Driven Self-Assembly of Solvates of Tetrabromoterephthalic Acid" Crystals 11, no. 2: 198. https://doi.org/10.3390/cryst11020198
APA StyleChongboriboon, N., Samakun, K., Dungkaew, W., Kielar, F., Sukwattanasinitt, M., & Chainok, K. (2021). Halogen-Bonding-Driven Self-Assembly of Solvates of Tetrabromoterephthalic Acid. Crystals, 11(2), 198. https://doi.org/10.3390/cryst11020198