Photocontrollable Resistivity Change in Nanoparticle-Doped Liquid Crystal Alignment Layer: Voltage Holding and Discharging Properties of Fringe-Field Switching Liquid Crystal Modes
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Voltage Holding and Discharging Properties According to PI Resistivity
3.2. Photocontrollable Resistivity Changes in Fullerene-Doped High-ρ PI Layer
3.3. Discharging Properties by Residual Voltage Dynamics
3.4. Frequency-Dependent Voltage Holding Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, S.H.; Lee, S.L.; Kim, H.Y. Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching. Appl. Phys. Lett. 1998, 73, 2881–2883. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, H.Y.; Lee, S.M.; Hong, S.H.; Kim, J.M.; Koh, J.W.; Lee, J.Y.; Park, H.S. Ultra-FFS TFT-LCD with super image quality, fast response time, and strong pressure-resistant characteristics. J. Soc. Inf. Disp. 2002, 10, 117–122. [Google Scholar] [CrossRef]
- Kim, D.H.; Lim, Y.J.; Kim, D.E.; Ren, H.; Ahn, S.H. Past, present, and future of fringe-field switching-liquid crystal display. J. Inf. Disp. 2014, 15, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Lee, J.H. Fast falling time of fringe-field switching negative dielectric anisotropy liquid crystal achieved by inserting vertical walls. Appl. Opt. 2015, 54, 1046–1050. [Google Scholar] [CrossRef]
- Yun, H.J.; Jo, M.H.; Jang, I.W.; Lee, S.H.; Ahn, S.H.; Hur, H.J. Achieving high light efficiency and fast response time in fringe field switching mode using a liquid crystal with negative dielectric anisotropy. Liq. Cryst. 2012, 39, 1141–1148. [Google Scholar] [CrossRef]
- Kim, T.S.; Kwa, S. 22.1: Invited Papers: Challenges and requirements of power saving techniques on mobile platforms. SID Symp. Dig. Tech. Pap. 2014, 45, 275–278. [Google Scholar] [CrossRef]
- You, B.H.; Nam, H.; Lee, H.J. 46-3: Image Adaptive Refresh Rate technology for Ultra Low Power Consumption. SID Symp. Dig. Tech. Pap. 2020, 51, 676–679. [Google Scholar] [CrossRef]
- Kim, M.; Jin, H.S.; Lee, S.J.; Shin, Y.H.; Ham, H.G.; Yang, D.K.; Bos, P.J.; Lee, J.H.; Lee, S.H. Liquid crystals for superior electro-optic performance display device with power-saving mode. Adv. Opt. Mater. 2018, 6, 1800022. [Google Scholar] [CrossRef]
- Tsuruma, T.; Goto, Y.; Higashi, A.; Watanabe, M.; Yamaguchi, H.; Tomooka, T.; Kikkawa, H. Novel image sticking model in the fringe field switching mode based on the flexoelectric effect. In Proceedings of the 31st International Display Research Conference 2011 (EuroDisplay 2011), Arcachon, France, 19–22 September 2011; Curran Associates, Inc.: Red Hook, NY, USA, 2011; pp. 15–18. [Google Scholar]
- Hatsumi, R.; Fukai, S.; Kubota, Y.; Yamashita, A.; Jikumaru, M.; Baba, H.; Moriya, K.; Kubota, D.; Kusunoki, K.; Hirakata, Y.; et al. FFS-mode OS-LCD for reducing eye strain. J. Soc. Inf. Disp. 2013, 21, 442–450. [Google Scholar] [CrossRef]
- Chen, H.; Peng, F.; Hu, M.; Wu, S.T. Flexoelectric effect and human eye perception on the image flickering of a liquid crystal display. Liq. Cryst. 2015, 42, 1730–1737. [Google Scholar] [CrossRef]
- Lee, D.J.; Shim, G.Y.; Choi, J.C.; Park, J.S.; Lee, J.H.; Baek, J.H.; Choi, H.C.; Ha, Y.M.; Ranjkesh, A.; Kim, H.R. Transient flickering behavior in fringe-field switching liquid crystal mode analyzed by positional asymmetric flexoelectric dynamics. Opt. Express 2015, 23, 34055–34070. [Google Scholar] [CrossRef]
- Kim, J.W.; Choi, T.H.; Yoon, T.H.; Choi, E.J.; Lee, J.H. Elimination of image flicker in fringe-field switching liquid crystal display driven with low frequency electric field. Opt. Express 2014, 22, 30586–30591. [Google Scholar] [CrossRef]
- Choi, H.S.; Kim, J.H.; Ham, H.G.; Lim, Y.J.; Lee, J.M.; Jin, H.S.; Manda, R.; Kim, M.S.; Yang, D.K.; Lee, S.H. P-131: Studies on flickering in low frequency driven fringe-field switching (FFS) liquid crystal display. SID Symp. Dig. Tech. Pap. 2016, 47, 1610. [Google Scholar] [CrossRef]
- Oh, S.W.; Park, J.H.; Lee, J.H.; Yoon, T.H. Elimination of image flicker in a fringe-field switching liquid crystal display by applying a bipolar voltage wave. Opt. Express 2015, 23, 24013–24018. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Bos, P.J.; Kim, D.W.; Keum, C.M.; Yang, D.K.; Ham, H.G.; Jeong, K.U.; Lee, J.H.; Lee, S.H. Field-symmetrization to solve luminance deviation between frames in a low-frequency-driven fringe-field switching liquid crystal cell. Opt. Express 2016, 24, 29568–29576. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, H.M.; Kim, J.Y.; Lee, J.H. Dependence of image flickering of negative dielectric anisotropy liquid crystal on the flexoelectric coefficient ratio and the interdigitated electrode structure. J. Phys. D Appl. Phys. 2016, 49, 075501. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, Z.; Peng, F.; Wu, S.T. Fringe-field switching with a negative dielectric anisotropy liquid crystal. J. Disp. Technol. 2013, 9, 74–77. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Peng, F.; Yamaguchi, T.; Song, X.; Wu, S.T. High performance negative dielectric anisotropy liquid crystals for display applications. Crystals 2013, 3, 483–503. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.H.; Kim, J.H.; Kwon, Y.R.; Ahn, S.H.; Srivastava, A.K.; Lee, S.H. Investigation on ion movement in the fringe-field switching mode depending on resistivity of alignment layer and dielectric anisotropic sign of liquid crystal. Liq. Cryst. 2015, 42, 486–491. [Google Scholar] [CrossRef]
- Yoon, S.S.; Ahn, S.H.; Choi, W.Y.; Lee, J.H.; Kim, H.S.; Jun, M.C.; Kang, I.B. The study on DC resistibility of positive and negative dielectric anisotropy liquid crystal in AH-IPS mode. Dig. Tech. Pap. Soc. Inf. Disp. Int. Symp. 2016, 47, 1697–1699. [Google Scholar] [CrossRef]
- Choi, J.C.; Lee, D.J.; Park, M.K.; Park, J.S.; Lee, J.H.; Baek, J.H.; Choi, H.C.; Kim, H.R. Highly enhanced voltage holding property for low-frequency-driven fringe-field switching liquid crystal mode by charge-trapping effect of carbon-nanotube-doped surface. Opt. Express 2019, 27, 29178–29195. [Google Scholar] [CrossRef]
- Tsutsui, K.; Sakai, T.; Goto, K.; Sawahata, K.; Ishikawa, M.; Fukuro, H. An image sticking-free novel alignment material for IPS-LCD. SID Int. Symp. Dig. Tech. Pap. 2003, 34, 1166–1169. [Google Scholar] [CrossRef]
- Lee, T.R.; Kim, J.H.; Lee, S.H.; Jun, M.C.; Baik, H.K. Investigation on newly designed low resistivity polyimide-type alignment layer for reducing DC image sticking of in-plane switching liquid crystal display. Liq. Cryst. 2017, 44, 738–747. [Google Scholar] [CrossRef]
- Mizusaki, M.; Miyashita, T.; Uchida, T.; Yamada, Y.; Ishii, Y.; Mizushima, S. Generation mechanism of residual direct current voltage in a liquid crystal display and its evaluation parameters related to liquid crystal and alignment layer materials. J. Appl. Phys. 2007, 102, 014904. [Google Scholar] [CrossRef]
- Lu, L.; Bhowmik, A.; Bos, P. The effect of dielectric constant on ion adsorption in liquid crystal devices. Liq. Cryst. 2013, 40, 7–13. [Google Scholar] [CrossRef]
- Xu, D.; Peng, F.; Chen, H.; Yuan, J.; Wu, S.T.; Li, M.C.; Lee, S.L.; Tsai, W.C. Image sticking in liquid crystal displays with lateral electric fields. J. Appl. Phys. 2014, 116, 193102. [Google Scholar] [CrossRef] [Green Version]
- Sariciftci, N.S.; Smilowitz, L.; Heeger, A.J.; Wudl, F. Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene. Science 1992, 258, 1474–1476. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Li, Y.; Li, Y. Fullerene derivatives for the applications as acceptor and cathode buffer layer materials for organic and perovskite Solar Cells. Adv. Energy Mater. 2017, 7, 1601251. [Google Scholar] [CrossRef]
- Zhang, D.; Hu, R.; Cheng, J.; Chang, Y.; Huo, M.; Yu, J.; Li, L.; Zhang, J.P. Appropriate donor-acceptor phase separation structure for the enhancement of charge generation and transport in polymer solar cells. Polymers 2018, 10, 332. [Google Scholar] [CrossRef] [Green Version]
- Keesey, U.T. Variable determining flicker sensitivity in small fields. J. Opt. Soc. Am. 1970, 60, 390–398. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, J.-H.; Choi, J.-C.; Lee, D.-J.; Lee, J.-W.; Kim, H.-R. Photocontrollable Resistivity Change in Nanoparticle-Doped Liquid Crystal Alignment Layer: Voltage Holding and Discharging Properties of Fringe-Field Switching Liquid Crystal Modes. Crystals 2021, 11, 268. https://doi.org/10.3390/cryst11030268
Ko J-H, Choi J-C, Lee D-J, Lee J-W, Kim H-R. Photocontrollable Resistivity Change in Nanoparticle-Doped Liquid Crystal Alignment Layer: Voltage Holding and Discharging Properties of Fringe-Field Switching Liquid Crystal Modes. Crystals. 2021; 11(3):268. https://doi.org/10.3390/cryst11030268
Chicago/Turabian StyleKo, Jeong-Hoon, Jun-Chan Choi, Dong-Jin Lee, Jae-Won Lee, and Hak-Rin Kim. 2021. "Photocontrollable Resistivity Change in Nanoparticle-Doped Liquid Crystal Alignment Layer: Voltage Holding and Discharging Properties of Fringe-Field Switching Liquid Crystal Modes" Crystals 11, no. 3: 268. https://doi.org/10.3390/cryst11030268
APA StyleKo, J. -H., Choi, J. -C., Lee, D. -J., Lee, J. -W., & Kim, H. -R. (2021). Photocontrollable Resistivity Change in Nanoparticle-Doped Liquid Crystal Alignment Layer: Voltage Holding and Discharging Properties of Fringe-Field Switching Liquid Crystal Modes. Crystals, 11(3), 268. https://doi.org/10.3390/cryst11030268