Fast Tunable Biological Fluorescence Detection Device with Integrable Liquid Crystal Filter
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Design and Experiment Preparation
2.2. Spectrum Filtering Based on Integrable Liquid Crystal Filter
3. Results and Discussion
3.1. Electro-optical Characterizations
3.2. Static Characterization and Resolution
3.3. The Dynamic Characterizations
4. Conclusions and Future Work
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gorkin, R.; Park, J.; Siegrist, J.; Amasia, M.; Lee, B.S.; Park, J.M.; Kim, J.; Kim, H.; Madou, M.; Cho, Y.K. Centrifugal microfluidics for biomedical applications. Lab Chip 2010, 10, 1758–1773. [Google Scholar] [CrossRef] [Green Version]
- Jokerst, J.V.; Raamanathan, A.; Christodoulides, N.; Floriano, P.N.; Pollard, A.A.; Simmons, G.W.; Wong, J.; Gage, C.; Furmage, W.B.; Redding, S.W. Nano-bio-chips for high performance multiplexed protein detection: Determinations of cancer biomarkers in serum and saliva using quantum dot bioconjugate labels. Biosens. Bioelectron. 2009, 24, 3622–3629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, Y.; Sonn, G.A.; Sin, M.L.; Mach, K.E.; Shih, M.C.; Gau, V.; Wong, P.K.; Liao, J.C. Electrochemical immunosensor detection of urinary lactoferrin in clinical samples for urinary tract infection diagnosis. Biosens. Bioelectron. 2010, 26, 649–654. [Google Scholar] [CrossRef] [Green Version]
- Ray, M.; Ray, A.; Dash, S.; Mishra, A.; Achary, K.G.; Nayak, S.; Singh, S. Fungal disease detection in plants: Traditional assays, novel diagnostic techniques and biosensors. Biosens. Bioelectron. 2017, 87, 708–723. [Google Scholar] [CrossRef] [PubMed]
- Sackmann, E.K.; Fulton, A.L.; Beebe, D.J. The present and future role of microfluidics in biomedical research. Nature 2014, 507, 181–189. [Google Scholar] [CrossRef]
- Cialla-May, D.; Zheng, X.S.; Weber, K.; Popp, J. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: From cells to clinics. Chem. Soc. Rev. 2017, 46, 3945–3961. [Google Scholar] [CrossRef]
- Hattersley, A.T.; Patel, K.A. Precision diabetes: Learning from monogenic diabetes. Diabetologia 2017, 60, 769–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, J.; Wu, M.; Gopukumar, D.; Zhao, Y. Big data application in biomedical research and health care: A literature review. Biomed. Inform. Insights 2016, 8, BII-S31559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, T.M.; Kohl, T.A.; Omar, S.V.; Hedge, J.; Elias, C.D.O.; Bradley, P.; Lqbal, Z.; Feuerriegel, S.; Niehaus, K.E.; Wilson, D.J.; et al. Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: A retrospective cohort study. Lancet Infect. Dis. 2015, 15, 1193–1202. [Google Scholar] [CrossRef] [Green Version]
- Dakin, J.P.; HOTATE, K.; Lieberman, R.A.; Marcus, M.A. Optical Fiber Sensors. Handb. Optoelectron; CRC Press: Boca Raton, FL, USA, 2017; pp. 347–430. [Google Scholar]
- Epelman, S.; Liu, P.P.; Mann, D.L. Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nat. Rev. Immunol. 2015, 15, 117–129. [Google Scholar] [CrossRef]
- Lee, H.; Shin, T.H.; Cheon, J.; Weissleder, R. Recent developments in magnetic diagnostic systems. Chem. Rev. 2015, 115, 10690–10724. [Google Scholar] [CrossRef] [Green Version]
- Sreekanth, K.V.; Alapan, Y.; ElKabbash, M.; Ilker, E.; Hinczewski, M.; Gurkan, U.A.; Luca, A.D.; Strangi, G. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater. 2016, 15, 621–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Naib, I. Biomedical Sensing with Free-Standing Complementary Supercell Terahertz Metasurfaces. Crystals 2020, 10, 372. [Google Scholar] [CrossRef]
- Baryshev, A.V.; Merzlikin, A.M. Plasmonic photonic-crystal slabs: Visualization of the Bloch surface wave resonance for an ultrasensitive, robust and reusable optical biosensor. Crystals 2014, 4, 498–508. [Google Scholar] [CrossRef] [Green Version]
- Nemes, P.; Woods, A.S.; Vertes, A. Simultaneous imaging of small metabolites and lipids in rat brain tissues at atmospheric pressure by laser ablation electrospray ionization mass spectrometry. Anal. Chem. 2010, 82, 982–988. [Google Scholar] [CrossRef] [Green Version]
- Antonucci, F.; Pallottino, F.; Paglia, G.; Palma, A.; D’Aquino, S.; Menesatti, P. Non-destructive estimation of mandarin maturity status through portable VIS-NIR spectrophotometer. Food Bioprocess Technol. 2011, 4, 809–813. [Google Scholar] [CrossRef]
- Sagle, L.B.; Ruvuna, L.K.; Ruemmele, J.A.; Van Duyne, R.P. Advances in localized surface plasmon resonance spectroscopy biosensing. Nanomedicine 2011, 6, 1447–1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, Y.; Shu, T.; Su, L.; Zhang, X. Fluorescent gold nanoclusters for biosensor and bioimaging application. Crystals 2020, 10, 357. [Google Scholar] [CrossRef]
- Zhang, X.; Fales, A.; Vo-Dinh, T. Time-resolved synchronous fluorescence for biomedical diagnosis. Sensors 2015, 15, 21746–21759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.; Zeng, Y.; Wang, L.; Gu, D.; He, J.; Wu, S.Y.; Ho, H.P.; Li, X.J.; Qu, J.L.; Gao, B.Z.; et al. Fast spectral surface plasmon resonance imaging sensor for real-time high-throughput detection of biomolecular interactions. J. Biomed. Opt. 2016, 21, 127003. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, S.; Suero Molina, E.; Ewelt, C.; Warneke, N.; Stummer, W. Fluorescence-based measurement of real-time kinetics of protoporphyrin IX after 5-aminolevulinic acid administration in human in situ malignant gliomas. Neurosurgery 2019, 85, E739–E746. [Google Scholar] [CrossRef]
- Sahu, K.; Verma, Y.; Sharma, M.; Rao, K.D.; Gupta, P.K. Non-invasive assessment of healing of bacteria infected and uninfected wounds using optical coherence tomography. Skin Res. Technol. 2010, 16, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Behrooz, A.; Waterman, P.; Vasquez, K.O.; Meganck, J.; Peterson, J.D.; Faqir, I.; Kempner, J. Multispectral open-air intraoperative fluorescence imaging. Opt. Lett. 2017, 42, 2964–2967. [Google Scholar] [CrossRef] [PubMed]
- Lee, O.; Kim, J.; Park, G.; Kim, M.; Son, S.; Ha, S.; Oh, C. Non-invasive assessment of cutaneous wound healing using fluorescent imaging. Skin Res. Technol. 2015, 21, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Thom, M.; Miserocchi, A.; McEvoy, A.W.; Desjardins, A.; Ourselin, S.; Vercauteren, T. Multi-scale spectrally resolved quantitative fluorescence imaging system: Towards neurosurgical guidance in glioma resection. Clinical and Translational Neurophotonics; International Society for Optics and Photonics: San Francisco, CA, USA, 2017; Volume 10050, p. 1005002. [Google Scholar]
- Nath, B.; Raza, A.; Sethi, V.; Dalal, A.; Ghosh, S.S.; Biswas, G. Understanding flow dynamics, viability and metastatic potency of cervical cancer (HeLa) cells through constricted microchannel. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef]
- Davis, D.W.; Haider, A.; Pierron, V.; Schmidlin, F. Apostream to isolate circulating tumor cells (CTC) from castration-resistant prostate cancer patients (CRPC) that express androgen receptor variant 7 (AR-V7) associated with resistance to AR-targeting drugs. J. Clin. Oncol. 2016, 34, e23025. [Google Scholar] [CrossRef]
- Mnif, I.; Ghribi, D. Review lipopeptides biosurfactants: Mean classes and new insights for industrial, biomedical, and environmental applications. Pept. Sci. 2015, 104, 129–147. [Google Scholar] [CrossRef]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tam, A.M.W.; Qi, G.; Srivastava, A.K.; Wang, X.Q.; Fan, F.; Chigrinov, V.G.; Kwok, H.S. Enhanced performance configuration for fast-switching deformed helix ferroelectric liquid crystal continuous tunable Lyot filter. Appl. Opt. 2014, 53, 3787–3795. [Google Scholar] [CrossRef]
- Aharon, O.; Abdulhalim, I. Liquid crystal Lyot tunable filter with extended free spectral range. Optics Express 2009, 17, 11426–11433. [Google Scholar] [CrossRef]
- Yang, D.K.; Wu, S.T. Fundamentals of Liquid Crystal Devices; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Yan, K.; Guo, Q.; Wu, F.; Sun, J.; Zhao, H.; Kwok, H.S. Polarization-independent nematic liquid crystal phase modulator based on optical compensation with sub-millisecond response. Opt. Express 2019, 27, 9925–9932. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Li, X.; Wang, Z.; Li, Y.; Pei, R. High-purity capture of CTCs based on micro-beads enhanced isolation by size of epithelial tumor cells (ISET) method. Biosens. Bioelectron. 2018, 102, 157–163. [Google Scholar] [CrossRef] [PubMed]
τ12 | τ23 | τ32 | τ21 | |
---|---|---|---|---|
Switching time (ms) | 12.66 | 13.17 | 20.78 | 10.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Sun, T.; Wu, X.; Cui, G.; Yang, M.; Bai, Z.; Wang, L.; Li, H.; Chen, W.; Leng, Q.; et al. Fast Tunable Biological Fluorescence Detection Device with Integrable Liquid Crystal Filter. Crystals 2021, 11, 272. https://doi.org/10.3390/cryst11030272
Yang Q, Sun T, Wu X, Cui G, Yang M, Bai Z, Wang L, Li H, Chen W, Leng Q, et al. Fast Tunable Biological Fluorescence Detection Device with Integrable Liquid Crystal Filter. Crystals. 2021; 11(3):272. https://doi.org/10.3390/cryst11030272
Chicago/Turabian StyleYang, Qing, Tong Sun, Xinyu Wu, Guangchao Cui, Mengzheng Yang, Zhongyang Bai, Lin Wang, Helin Li, Wenjing Chen, Qunwen Leng, and et al. 2021. "Fast Tunable Biological Fluorescence Detection Device with Integrable Liquid Crystal Filter" Crystals 11, no. 3: 272. https://doi.org/10.3390/cryst11030272
APA StyleYang, Q., Sun, T., Wu, X., Cui, G., Yang, M., Bai, Z., Wang, L., Li, H., Chen, W., Leng, Q., Puers, R., Frederik, C., Kraft, M., Song, Q., Fang, H., Tian, D., Wang, D., Zhao, H., Zhao, W., ... Wen, L. (2021). Fast Tunable Biological Fluorescence Detection Device with Integrable Liquid Crystal Filter. Crystals, 11(3), 272. https://doi.org/10.3390/cryst11030272