State-of-the-Art Review of the Applicability and Challenges of Microbial-Induced Calcite Precipitation (MICP) and Enzyme-Induced Calcite Precipitation (EICP) Techniques for Geotechnical and Geoenvironmental Applications
Abstract
:1. Introduction
2. Overview of the Microbial-Induced Calcite Precipitation (MICP) and Enzyme-Induced Calcite Precipitation (EICP) Methods
Hydrolysis of Urea
3. Bacterial Precipitation of CaCO3 in Soils
4. Enzyme Usage and Sources for Soil Treatment
Use of Additives in the Biotreatment
5. Geotechnical Applications of the Biocementation Technique
5.1. Biotreatment Techniques
5.2. Effect of Biotreatment on the Unconfined Compressive Strength (UCS) Test
5.3. Reduction of Hydraulic Conductivity by Biotreatment
5.4. Liquefaction Control by Biotreatment
6. Biotreatment of Soils for Geoenvironmental Applications
Effect of Biotreatment on Mine Tailings/Dust Control
7. Limitations of Biocementation Techniques
8. Conclusions
- The development of biostabilization methods has been proven to be sustainable, eco-friendly, and effective in soil treatment, leading to the improvement in the geotechnical performance of soils such as reduced permeability, reduced porosity of soil mass, improved bearing capacity, control of soil erosion/dust, mitigated liquefaction of soils, seepage control, stabilized slopes, and contaminant remediation.
- The possibility of the intrusion of bacteria in soils for calcite precipitation is limited due to their sizes. Soil pores with sizes less than 0.5 µ cannot accommodate the microbes for the process of calcite precipitation since sizes of microns range from 0.5 µm to 3 µm. Enzyme particulates have sizes of about 12 nm, which can make the precipitation of calcite more convenient, even in finer clays.
- Soil treatment with MICP/EICP may increase chloride and ammonium ion (formed during hydrolysis) concentrations in the groundwater due to the precipitates of CaCO3. It even causes an increase in the pH of the surrounding groundwater, triggering corrosion for structures built on them. The applicability of these techniques also pose challenges such as thee type of soil to be treated and the associated costs. Further studies on biotreatment can address these issues and aid in developing better application methods of biotreatment.
- Between the two methods, EICP is preferred over MICP as it requires less monitoring. The literature suggests that precipitates developed through MICP are vulnerable to moisture and may dissolve. MICP requires the environment to be maintained for proper bacterial growth and the production of urease enzymes. On the other hand, in EICP, the use of free urease is more promising for the calcite precipitation in the voids of soil grains. It provides a convenient approach to soil treatment because of its ease of application and lower maintenance in comparison to the MICP method.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Changizi, F.; Haddad, A. Effect of Nano-SiO2 on the Geotechnical Properties of Cohesive Soil. Geotech. Geol. Eng. 2016, 34, 725–733. [Google Scholar] [CrossRef]
- Harichane, K.; Ghrici, M.; Kenai, S.; Grine, K. Use of Natural Pozzolana and Lime for Stabilization of Cohesive Soils. Geotech. Geol. Eng. 2011, 29, 759–769. [Google Scholar] [CrossRef]
- Attoh-Okine, N.O. Lime Treatment of Laterite Soils and Gravels—Revisited. Constr. Build. Mater. 1995, 9, 283–287. [Google Scholar] [CrossRef]
- Moghal, A.A.B.; Vydehi, K.V. State-of-the-Art Review on Efficacy of Xanthan Gum and Guar Gum Inclusion on the Engineering Behavior of Soils. Innov. Infrastruct. Solut. 2021, 6, 108. [Google Scholar] [CrossRef]
- Renjith, R.; Robert, D.J.; Gunasekara, C.; Setunge, S.; O’Donnell, B. Optimization of Enzyme-Based Soil Stabilization. J. Mater. Civ. Eng. 2020, 32. [Google Scholar] [CrossRef]
- Calik, U.; Sadoglu, E. Engineering Properties of Expansive Clayey Soil Stabilized with Lime and Perlite. Geomech. Eng. 2014, 6, 403–418. [Google Scholar] [CrossRef]
- Tingle, J.S.; Santoni, R.L. Stabilization of Clay Soils with Nontraditional Additives. Transp. Res. Rec. 2003, 1819, 72–84. [Google Scholar] [CrossRef]
- Correia, A.A.S.; Rasteiro, M.G. Nanotechnology Applied to Chemical Soil Stabilization. Procedia Eng. 2016, 143, 1252–1259. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, P.K.; Kar, R.K.; Naik, A. Effect of Random Inclusion of Polypropylene Fibers on Strength Characteristics of Cohesive Soil. Geotech. Geol. Eng. 2012, 30, 15–25. [Google Scholar] [CrossRef]
- Soon, N.W.; Lee, L.M.; Khun, T.C.; Ling, H.S. Improvements in Engineering Properties of Soils through Microbial-Induced Calcite Precipitation. KSCE J. Civ. Eng. 2013, 17, 718–728. [Google Scholar] [CrossRef]
- Sangeetha, V.; Thenmozhi, A.; Devasena, M. Enhanced Removal of Lead from Soil Using Biosurfactant Derived from Edible Oils. Soil Sediment Contam. Int. J. 2021, 30, 135–147. [Google Scholar] [CrossRef]
- Kang, C.-H.; Kwon, Y.-J.; So, J.-S. Bioremediation of Heavy Metals by Using Bacterial Mixtures. Ecol. Eng. 2016, 89, 64–69. [Google Scholar] [CrossRef]
- Mitchell, J.K.; Santamarina, J.C. Biological Considerations in Geotechnical Engineering. J. Geotech. Geoenviron. Eng. 2005, 131, 1222–1233. [Google Scholar] [CrossRef] [Green Version]
- Dejong, J.T.; Soga, K.; Kavazanjian, E.; Burns, S.; Van Paassen, L.A.; Al Qabany, A.; Aydilek, A.; Bang, S.S.; Burbank, M.; Caslake, L.F.; et al. Biogeochemical Processes and Geotechnical Applications: Progress, Opportunities and Challenges. Géotechnique 2013, 63, 287–301. [Google Scholar] [CrossRef] [Green Version]
- National Research Council. Geological and Geotechnical Engineering in the New Millennium: Opportunities for Research and Technological Innovation; National Academies Press: Washington, DC, USA, 2006; ISBN 978-0-309-10009-0. [Google Scholar]
- Espinoza, D.N.; Santamarina, J.C. Ant Tunneling—A Granular Media Perspective. Granul. Matter 2010, 12, 607–616. [Google Scholar] [CrossRef]
- Li, M.; Cheng, X.; Guo, H. Heavy Metal Removal by Biomineralization of Urease Producing Bacteria Isolated from Soil. Int. Biodeterior. Biodegrad. 2013, 76, 81–85. [Google Scholar] [CrossRef]
- Han, L.; Li, J.; Xue, Q.; Chen, Z.; Zhou, Y.; Poon, C.S. Bacterial-Induced Mineralization (BIM) for Soil Solidification and Heavy Metal Stabilization: A Critical Review. Sci. Total Environ. 2020, 746, 140967. [Google Scholar] [CrossRef]
- Rahman, M.M.; Hora, R.N.; Ahenkorah, I.; Beecham, S.; Karim, M.R.; Iqbal, A. State-of-the-Art Review of Microbial-Induced Calcite Precipitation and Its Sustainability in Engineering Applications. Sustainability 2020, 12, 6281. [Google Scholar] [CrossRef]
- Burbank, M.B.; Weaver, T.J.; Green, T.L.; Williams, B.C.; Crawford, R.L. Precipitation of Calcite by Indigenous Microorganisms to Strengthen Liquefiable Soils. Geomicrobiol. J. 2011, 28, 301–312. [Google Scholar] [CrossRef]
- Burbank, M.; Weaver, T.; Lewis, R.; Williams, T.; Williams, B.; Crawford, R. Geotechnical Tests of Sands Following Bioinduced Calcite Precipitation Catalyzed by Indigenous Bacteria. J. Geotech. Geoenvironmental Eng. 2013, 139, 928–936. [Google Scholar] [CrossRef]
- Chou, C.-W.; Seagren, E.A.; Aydilek, A.H.; Lai, M. Biocalcification of Sand through Ureolysis. J. Geotech. Geoenviron. Eng. 2011, 137, 1179–1189. [Google Scholar] [CrossRef] [Green Version]
- DeJong, J.T.; Fritzges, M.B.; Nüsslein, K. Microbially Induced Cementation to Control Sand Response to Undrained Shear. J. Geotech. Geoenviron. Eng. 2006, 132, 1381–1392. [Google Scholar] [CrossRef]
- Venda Oliveira, P.J.; da Costa, M.S.; Costa, J.N.P.; Nobre, M.F. Comparison of the Ability of Two Bacteria to Improve the Behavior of Sandy Soil. J. Mater. Civ. Eng. 2015, 27. [Google Scholar] [CrossRef]
- Stocks-Fischer, S.; Galinat, J.K.; Bang, S.S. Microbiological Precipitation of CaCO3. Soil Biol. Biochem. 1999, 31, 1563–1571. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Rodriguez-Gallego, M.; Chekroun, K.B.; Gonzalez-Muñoz, M.T. Conservation of Ornamental Stone by Myxococcus Xanthus-Induced Carbonate Biomineralization. Appl. Environ. Microbiol. 2003, 69, 2182–2193. [Google Scholar] [CrossRef] [Green Version]
- Bucci, N.A.; Ghazanfari, E.; Lu, H. Microbially-Induced Calcite Precipitation for Sealing Rock Fractures. Geo-Chicago 2016, 558–567. [Google Scholar] [CrossRef]
- Hammes, F.; Seka, A.; de Knijf, S.; Verstraete, W. A Novel Approach to Calcium Removal from Calcium-Rich Industrial Wastewater. Water Res. 2003. [Google Scholar] [CrossRef]
- Chek, A.; Crowley, R.; Ellis, T.N.; Durnin, M.; Wingender, B. Evaluation of Factors Affecting Erodibility Improvement for MICP-Treated Beach Sand. J. Geotech. Geoenviron. Eng. 2021, 147. [Google Scholar] [CrossRef]
- Neupane, D.; Yasuhara, H.; Kinoshita, N.; Unno, T. Applicability of Enzymatic Calcium Carbonate Precipitation as a Soil-Strengthening Technique. J. Geotech. Geoenviron. Eng. 2013, 139, 2201–2211. [Google Scholar] [CrossRef]
- Yasuhara, H.; Hayashi, K.; Okamura, M. Evolution in Mechanical and Hydraulic Properties of Calcite-Cemented Sand Mediated by Biocatalyst. Adv. Geotech. Eng. 2012, 3984–3992. [Google Scholar] [CrossRef]
- Nemati, M.; Voordouw, G. Modification of Porous Media Permeability, Using Calcium Carbonate Produced Enzymatically in Situ. Enzyme Microb. Technol. 2003, 33, 635–642. [Google Scholar] [CrossRef]
- Putra, H.; Yasuhara, H.; Erizal; Sutoyo; Fauzan, M. Review of Enzyme-Induced Calcite Precipitation as a Ground-Improvement Technique. Infrastructures 2020, 5, 66. [Google Scholar] [CrossRef]
- Kavazanjian, E.; Almajed, A.; Hamdan, N. Bio-Inspired Soil Improvement Using EICP Soil Columns and Soil Nails. Grouting 2017, 13–22. [Google Scholar] [CrossRef]
- Song, J.Y.; Sim, Y.; Jang, J.; Hong, W.-T.; Yun, T.S. Near-Surface Soil Stabilization by Enzyme-Induced Carbonate Precipitation for Fugitive Dust Suppression. Acta Geotech. 2020, 15, 1967–1980. [Google Scholar] [CrossRef]
- Harkes, M.P.; van Paassen, L.A.; Booster, J.L.; Whiffin, V.S.; van Loosdrecht, M.C.M. Fixation and Distribution of Bacterial Activity in Sand to Induce Carbonate Precipitation for Ground Reinforcement. Ecol. Eng. 2010, 36, 112–117. [Google Scholar] [CrossRef]
- Ossai, R.; Rivera, L.; Bandini, P. Experimental Study to Determine an EICP Application Method Feasible for Field Treatment for Soil Erosion Control. Am. Soc. Civ. Eng. 2020, 205–213. [Google Scholar] [CrossRef]
- Kavazanjian, E.; Hamdan, N. Enzyme Induced Carbonate Precipitation (EICP) Columns for Ground Improvement. IFFCEE 2015, 2252–2261. [Google Scholar] [CrossRef]
- Yuan, H.; Ren, G.; Liu, K.; Zheng, W.; Zhao, Z. Experimental Study of EICP Combined with Organic Materials for Silt Improvement in the Yellow River Flood Area. Appl. Sci. 2020, 10, 7678. [Google Scholar] [CrossRef]
- Almajed, A.; Khodadadi Tirkolaei, H.; Kavazanjian, E. Baseline Investigation on Enzyme-Induced Calcium Carbonate Precipitation. J. Geotech. Geoenviron. Eng. 2018, 144. [Google Scholar] [CrossRef]
- Almajed, A.; Abbas, H.; Arab, M.; Alsabhan, A.; Hamid, W.; Al-Salloum, Y. Enzyme-Induced Carbonate Precipitation (EICP)-Based Methods for Ecofriendly Stabilization of Different Types of Natural Sands. J. Clean. Prod. 2020, 274, 122627. [Google Scholar] [CrossRef]
- Choi, S.-G.; Chang, I.; Lee, M.; Lee, J.-H.; Han, J.-T.; Kwon, T.-H. Review on Geotechnical Engineering Properties of Sands Treated by Microbially Induced Calcium Carbonate Precipitation (MICP) and Biopolymers. Constr. Build. Mater. 2020, 246, 118415. [Google Scholar] [CrossRef]
- Miftah, A.; Tirkolaei, H.K.; Bilsel, H. Bio-Precipitation of CaCO3 for Soil Improvement: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2020, 800, 012037. [Google Scholar] [CrossRef]
- Mujah, D.; Shahin, M.A.; Cheng, L. State-of-the-Art Review of Biocementation by Microbially Induced Calcite Precipitation (MICP) for Soil Stabilization. Geomicrobiol. J. 2017, 34, 524–537. [Google Scholar] [CrossRef]
- Golovkina, D.A.; Zhurishkina, E.V.; Ivanova, L.A.; Baranchikov, A.E.; Sokolov, A.Y.; Bobrov, K.S.; Masharsky, A.E.; Tsvigun, N.V.; Kopitsa, G.P.; Kulminskaya, A.A. Calcifying Bacteria Flexibility in Induction of CaCO3 Mineralization. Life 2020, 10, 317. [Google Scholar] [CrossRef]
- Stotzky, G. Soil as an Environment for Microbial Life. In Modern Soil Microbiology, 3rd ed.; van Elsas, J.D., Trevors, J.T., Wellington, E.M.H., Eds.; CRC Press: Boca Raton, FL, USA, 2019; ISBN 9781498763530. [Google Scholar]
- Woese, C.R.; Kandler, O.; Wheelis, M.L. Towards a Natural System of Organisms: Proposal for the Domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 1990, 87, 4576–4579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehrlich, H.L. Geomicrobiology: Its Significance for Geology. Earth-Sci. Rev. 1998, 45, 45–60. [Google Scholar] [CrossRef]
- Brock Biology of Microorganisms|15th Edition|Pearson. Available online: https://www.pearson.com/store/p/brock-biology-of-microorganisms/P100000185862/9780134261928 (accessed on 16 January 2021).
- Lee, J.; Kim, K.; Chun, B. Strength Characteristics of Soils Mixed with an Organic Acid Material for Improvement. J. Mater. Civ. Eng. 2012, 24, 1529–1533. [Google Scholar] [CrossRef]
- Umar, M.; Kassim, K.A.; Ping Chiet, K.T. Biological Process of Soil Improvement in Civil Engineering: A Review. J. Rock Mech. Geotech. Eng. 2016, 8, 767–774. [Google Scholar] [CrossRef] [Green Version]
- Van Paassen, L.A.; Daza, C.M.; Staal, M.; Sorokin, D.Y.; van der Zon, W.; van Loosdrecht, M.C.M. Potential Soil Reinforcement by Biological Denitrification. Ecol. Eng. 2010, 36, 168–175. [Google Scholar] [CrossRef]
- Mortensen, B.M.; Haber, M.J.; DeJong, J.T.; Caslake, L.F.; Nelson, D.C. Effects of Environmental Factors on Microbial Induced Calcium Carbonate Precipitation. J. Appl. Microbiol. 2011, 111, 338–349. [Google Scholar] [CrossRef]
- De Muynck, W.; De Belie, N.; Verstraete, W. Microbial Carbonate Precipitation in Construction Materials: A Review. Ecol. Eng. 2010, 36, 118–136. [Google Scholar] [CrossRef]
- Park, S.-S.; Choi, S.-G.; Kim, W.-J.; Lee, J.-C. Effect of Microbially Induced Calcite Precipitation on the Strength of Cemented Sand. New Front. Geotech. Eng. 2014, 47–56. [Google Scholar] [CrossRef]
- Meyer, F.D.; Bang, S.; Min, S.; Stetler, L.D.; Bang, S.S. Microbiologically-Induced Soil Stabilization: Application of Sporosarcina Pasteurii for Fugitive Dust Control. Adv. Geotech. Eng. 2012, 4002–4011. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, M.S.; Azahar, S.B.; Yusof, N.Z. Soil Improvement Using MICP and Biopolymers: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2017, 226, 012058. [Google Scholar] [CrossRef] [Green Version]
- Castanier, S.; Le Métayer-Levrel, G.; Perthuisot, J.-P. Ca-Carbonates Precipitation and Limestone Genesis—The Microbiogeologist Point of View. Sediment. Geol. 1999, 126, 9–23. [Google Scholar] [CrossRef]
- Shirakawa, M.A.; Kaminishikawahara, K.K.; John, V.M.; Kahn, H.; Futai, M.M. Sand Bioconsolidation through the Precipitation of Calcium Carbonate by Two Ureolytic Bacteria. Mater. Lett. 2011, 65, 1730–1733. [Google Scholar] [CrossRef]
- Chittoori, B.C.S.; Rahman, T.; Burbank, M.; Moghal, A.A.B. Evaluating Shallow Mixing Protocols as Application Methods for Microbial Induced Calcite Precipitation Targeting Expansive Soil Treatment. Am. Soc. Civ. Eng. 2019, 250–259. [Google Scholar] [CrossRef]
- Stal, L.J. Microphytobenthos as a Biogeomorphological Force in Intertidal Sediment Stabilization. Ecol. Eng. 2010, 36, 236–245. [Google Scholar] [CrossRef]
- Shanahan, C.; Montoya, B.M. Erosion Reduction of Coastal Sands Using Microbial Induced Calcite Precipitation. Geo-Chicago 2016, 42–51. [Google Scholar] [CrossRef]
- Proto, C.J.; DeJong, J.T.; Nelson, D.C. Biomediated Permeability Reduction of Saturated Sands. J. Geotech. Geoenviron. Eng. 2016, 142, 04016073. [Google Scholar] [CrossRef]
- Baćmaga, M.; Wyszkowska, J.; Kucharski, J. Bioaugmentation of Soil Contaminated with Azoxystrobin. Water. Air. Soil Pollut. 2016, 228, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.-K.; Ding, N.; Peterson, E.C. Bioaugmentation of Soil Contaminated with High-Level Crude Oil through Inoculation with Mixed Cultures Including Acremonium Sp. Biodegradation 2015, 26, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Fan, C.; Ge, F.; Cheng, X.; Liu, P. Enhancing Strength of MICP-Treated Sand with Scrap of Activated Carbon-Fiber Felt. J. Mater. Civ. Eng. 2020, 32, 04020061. [Google Scholar] [CrossRef]
- Larsen, J.; Poulsen, M.; Lundgaard, T.; Agerbaek, M. Plugging of Fractures in Chalk Reservoirs by Enzyme-Induced Calcium Carbonate Precipitation. SPE Prod. Oper. 2008, 23, 478–483. [Google Scholar] [CrossRef]
- Sumner, J.B. The Isolation and Crystallization of the Enzyme Urease: Preliminary Paper. J. Biol. Chem. 1926, 69, 435–441. [Google Scholar] [CrossRef]
- Balasubramanian, A.; Ponnuraj, K. Crystal Structure of the First Plant Urease from Jack Bean: 83 Years of Journey from Its First Crystal to Molecular Structure. J. Mol. Biol. 2010, 400, 274–283. [Google Scholar] [CrossRef]
- Blakeley, R.L.; Zerner, B. Jack Bean Urease: The First Nickel Enzyme. J. Mol. Catal. 1984, 23, 263–292. [Google Scholar] [CrossRef]
- Oliveira, P.J.V.; Freitas, L.D.; Carmona, J.P.S.F. Effect of Soil Type on the Enzymatic Calcium Carbonate Precipitation Process Used for Soil Improvement. J. Mater. Civ. Eng. 2017, 29, 04016263. [Google Scholar] [CrossRef]
- Javadi, N.; Khodadadi, H.; Hamdan, N.; Kavazanjian, E. EICP Treatment of Soil by Using Urease Enzyme Extracted from Watermelon Seeds. IFCEE 2018, 115–124. [Google Scholar] [CrossRef]
- Pratama, G.B.S.; Yasuhara, H.; Kinoshita, N.; Putra, H. Application of Soybean Powder as Urease Enzyme Replacement on EICP Method for Soil Improvement Technique. IOP Conf. Ser. Earth Environ. Sci. 2021, 622, 012035. [Google Scholar] [CrossRef]
- Almajed, A.A. Enzyme Induced Carbonate Precipitation (EICP) for Soil Improvement. Ph.D. Thesis, Arizona State University, Phoenix, AZ, USA, 2017. [Google Scholar]
- Almajed, A.; Tirkolaei, H.K.; Kavazanjian, E.; Hamdan, N. Enzyme Induced Biocementated Sand with High Strength at Low Carbonate Content. Sci. Rep. 2019, 9, 1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almajed, A. Enzyme Induced Cementation of Biochar-Intercalated Soil: Fabrication and Characterization. Arab. J. Geosci. 2019, 12, 403. [Google Scholar] [CrossRef]
- Almajed, A.; Khodadadi, H.; Kavazanjian, E. Sisal Fiber Reinforcement of EICP-Treated Soil. IFCEE 2018, 29–36. [Google Scholar] [CrossRef]
- Hamdan, N.; Kavazanjian, E. Enzyme-Induced Carbonate Mineral Precipitation for Fugitive Dust Control. Géotechnique 2016, 66, 546–555. [Google Scholar] [CrossRef]
- Putra, H.; Yasuhara, H.; Kinoshita, N.; Neupane, D.; Lu, C.-W. Effect of Magnesium as Substitute Material in Enzyme-Mediated Calcite Precipitation for Soil-Improvement Technique. Front. Bioeng. Biotechnol. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Hommel, J.; Akyel, A.; Frieling, Z.; Phillips, A.J.; Gerlach, R.; Cunningham, A.B.; Class, H. A Numerical Model for Enzymatically Induced Calcium Carbonate Precipitation. Appl. Sci. 2020, 10, 4538. [Google Scholar] [CrossRef]
- Whiffin, V.S.; van Paassen, L.A.; Harkes, M.P. Microbial Carbonate Precipitation as a Soil Improvement Technique. Geomicrobiol. J. 2007, 24, 417–423. [Google Scholar] [CrossRef]
- DeJong, J.T.; Mortensen, B.M.; Martinez, B.C.; Nelson, D.C. Bio-Mediated Soil Improvement. Ecol. Eng. 2010, 36, 197–210. [Google Scholar] [CrossRef]
- Burbank, M.B.; Weaver, T.J.; Williams, B.C.; Crawford, R.L. Urease Activity of Ureolytic Bacteria Isolated from Six Soils in Which Calcite Was Precipitated by Indigenous Bacteria. Geomicrobiol. J. 2012, 29, 389–395. [Google Scholar] [CrossRef]
- Barabesi, C.; Galizzi, A.; Mastromei, G.; Rossi, M.; Tamburini, E.; Perito, B. Bacillus Subtilis Gene Cluster Involved in Calcium Carbonate Biomineralization. J. Bacteriol. 2007, 189, 228–235. [Google Scholar] [CrossRef] [Green Version]
- Sotoudehfar, A.R.; Sadeghi, M.M.; Mokhtari, E.; Shafiei, F. Assessment of the Parameters Influencing Microbial Calcite Precipitation in Injection Experiments Using Taguchi Methodology. Geomicrobiol. J. 2016, 33, 163–172. [Google Scholar] [CrossRef]
- Jiang, N.-J.; Soga, K.; Kuo, M. Microbially Induced Carbonate Precipitation for Seepage-Induced Internal Erosion Control in Sand–Clay Mixtures. J. Geotech. Geoenviron. Eng. 2017, 143, 04016100. [Google Scholar] [CrossRef]
- Neupane, D.; Yasuhara, H.; Kinoshita, N.; Putra, H. Distribution of Grout Material within 1-m Sand Column in Insitu Calcite Precipitation Technique. Soils Found. 2015, 55, 1512–1518. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, V.; Chu, J.; Stabnikov, V.; Li, B. Strengthening of Soft Marine Clay Using Bioencapsulation. Mar. Georesources Geotechnol. 2015, 33, 320–324. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, L.; Li, C.; Li, M.; Amini, F.; Zhang, H. Factors Affecting Improvement of Engineering Properties of MICP-Treated Soil Catalyzed by Bacteria and Urease. J. Mater. Civ. Eng. 2014, 26, 04014094. [Google Scholar] [CrossRef]
- Cheng, L.; Cord-RuwischRalf, A.S. Cementation of Sand Soil by Microbially Induced Calcite Precipitation at Various Degrees of Saturation. Can. Geotech. J. 2013. [Google Scholar] [CrossRef]
- Ali, F.H.; Adnan, A.; Choy, C.K. Geotechnical Properties of a Chemically Stabilized Soil from Malaysia with Rice Husk Ash as an Additive. Geotech. Geol. Eng. 1992, 10, 117–134. [Google Scholar] [CrossRef]
- Sharma, A.; Ramkrishnan, R. Study on Effect of Microbial Induced Calcite Precipitates on Strength of Fine Grained Soils. Perspect. Sci. 2016, 8, 198–202. [Google Scholar] [CrossRef] [Green Version]
- Wani, K.M.N.S.; Mir, B.A. Unconfined Compressive Strength Testing of Bio-Cemented Weak Soils: A Comparative Upscale Laboratory Testing. Arab. J. Sci. Eng. 2020, 45, 8145–8157. [Google Scholar] [CrossRef]
- Moghal, A.A.B.; Lateef, M.A.; Mohammed, S.A.S.; Lemboye, K.; Chittoori, B.; Almajed, A. Efficacy of Enzymatically Induced Calcium Carbonate Precipitation in the Retention of Heavy Metal Ions. Sustainability 2020, 12, 7019. [Google Scholar] [CrossRef]
- Xiao, J.Z.; Wei, Y.Q.; Cai, H.; Wang, Z.W.; Yang, T.; Wang, Q.H.; Wu, S.F. Microbial-Induced Carbonate Precipitation for Strengthening Soft Clay. Adv. Mater. Sci. Eng. 2020, 2020, 8140724. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-S.; Choi, S.-G.; Nam, I.-H. Effect of Plant-Induced Calcite Precipitation on the Strength of Sand. J. Mater. Civ. Eng. 2014, 26, 06014017. [Google Scholar] [CrossRef]
- Mwandira, W.; Nakashima, K.; Kawasaki, S. Bioremediation of Lead-Contaminated Mine Waste by Pararhodobacter Sp. Based on the Microbially Induced Calcium Carbonate Precipitation Technique and Its Effects on Strength of Coarse and Fine Grained Sand. Ecol. Eng. 2017, 109, 57–64. [Google Scholar] [CrossRef]
- Van Paassen, L.A.; Ghose, R.; van der Linden, T.J.M.; van der Star, W.R.L.; van Loosdrecht, M.C.M. Quantifying Biomediated Ground Improvement by Ureolysis: Large-Scale Biogrout Experiment. J. Geotech. Geoenviron. Eng. 2010, 136, 1721–1728. [Google Scholar] [CrossRef]
- Neupane, D.; Yasuhara, H.; Kinoshita, N.; Ando, Y. Distribution of Mineralized Carbonate and Its Quantification Method in Enzyme Mediated Calcite Precipitation Technique. Soils Found. 2015, 55, 447–457. [Google Scholar] [CrossRef] [Green Version]
- Yasuhara, H.; Neupane, D.; Hayashi, K.; Okamura, M. Experiments and Predictions of Physical Properties of Sand Cemented by Enzymatically-Induced Carbonate Precipitation. Soils Found. 2012, 52, 539–549. [Google Scholar] [CrossRef] [Green Version]
- Mahawish, A.; Bouazza, A.; Gates, W.P. Unconfined Compressive Strength and Visualization of the Microstructure of Coarse Sand Subjected to Different Biocementation Levels. J. Geotech. Geoenviron. Eng. 2019, 145, 04019033. [Google Scholar] [CrossRef]
- Putra, H.; Yasuhara, H.; Kinoshita, N. Optimum Condition for the Application of Enzyme-Mediated Calcite Precipitation Technique as Soil Improvement Technique. Int. J. Adv. Sci. Eng. Inf. Technol. 2017, 7, 2145–2151. [Google Scholar] [CrossRef]
- Gomez, M.G.; Anderson, C.M.; DeJong, J.T.; Nelson, D.C.; Lau, X.H. Stimulating In Situ Soil Bacteria for Bio-Cementation of Sands. Geo-Charact. Modeling Sustain. 2014, 1674–1682. [Google Scholar] [CrossRef]
- Dilrukshi, R.A.N.; Nakashima, K.; Kawasaki, S. Soil Improvement Using Plant-Derived Urease-Induced Calcium Carbonate Precipitation. Soils Found. 2018, 58, 894–910. [Google Scholar] [CrossRef]
- Khodadadi, T.H.; Krishnan, V.; Martin, K.; Hamdan, N.; Kavazanjian, E.; Almajed, A. Variation in Strength of EICP Treated “Standard” Sand. In Proceedings of the International Symposium on Bio-mediated and Bio-inspired Geotechnics, Atlanta, GA, USA, 10–12 September 2018. [Google Scholar]
- Krishnan, V.; Khodadadi Tirkolaei, H.; Martin, K.; Hamdan, N.; van Paassen, L.A.; Kavazanjian, E. Variability in the Unconfined Compressive Strength of EICP-Treated “Standard” Sand. J. Geotech. Geoenviron. Eng. 2021, 147, 06021001. [Google Scholar] [CrossRef]
- Thomas, A.; Tripathi, R.K.; Yadu, L.K. Variation in a Shear Modulus of Enzyme-Treated Soil under Cyclic Loading. Geo-China 2016, 88–95. [Google Scholar] [CrossRef]
- Zamani, A.; Montoya, B.M. Permeability Reduction Due to Microbial Induced Calcite Precipitation in Sand. Geo-Chicago 2016, 94–103. [Google Scholar] [CrossRef]
- Nemati, M.; Greene, E.A.; Voordouw, G. Permeability Profile Modification Using Bacterially Formed Calcium Carbonate: Comparison with Enzymic Option. Process Biochem. 2005, 40, 925–933. [Google Scholar] [CrossRef]
- Handley-Sidhu, S.; Sham, E.; Cuthbert, M.O.; Nougarol, S.; Mantle, M.; Johns, M.L.; Macaskie, L.E.; Renshaw, J.C. Kinetics of Urease Mediated Calcite Precipitation and Permeability Reduction of Porous Media Evidenced by Magnetic Resonance Imaging. Int. J. Environ. Sci. Technol. 2013, 10, 881–890. [Google Scholar] [CrossRef] [Green Version]
- Hataf, N.; Baharifard, A. Reducing Soil Permeability Using Microbial Induced Carbonate Precipitation (MICP) Method: A Case Study of Shiraz Landfill Soil. Geomicrobiol. J. 2020, 37, 147–158. [Google Scholar] [CrossRef]
- Wani, K.M.N.S.; Mir, B.A. Microbial Geo-Technology in Ground Improvement Techniques: A Comprehensive Review. Innov. Infrastruct. Solut. 2020, 5, 82. [Google Scholar] [CrossRef]
- Martinez, B.C.; DeJong, J.T.; Ginn, T.R.; Montoya, B.M.; Barkouki, T.H.; Hunt, C.; Tanyu, B.; Major, D. Experimental Optimization of Microbial-Induced Carbonate Precipitation for Soil Improvement. J. Geotech. Geoenviron. Eng. 2013, 139, 587–598. [Google Scholar] [CrossRef]
- Cuthbert, M.O.; McMillan, L.A.; Handley-Sidhu, S.; Riley, M.S.; Tobler, D.J.; Phoenix, V.R. A Field and Modeling Study of Fractured Rock Permeability Reduction Using Microbially Induced Calcite Precipitation. Environ. Sci. Technol. 2013, 47, 13637–13643. [Google Scholar] [CrossRef]
- Ferris, F.G.; Stehmeier, L.G.; Kantzas, A.; Mourits, F.M. Bacteriogenic Mineral Plugging. J. Can. Pet. Technol. 1996, 35. [Google Scholar] [CrossRef]
- Gui, R.; Pan, Y.; Ding, D.; Liu, Y.; Zhang, Z. Experimental Study on Bioclogging in Porous Media during the Radioactive Effluent Percolation. Adv. Civ. Eng. 2018, 2018, 9671371. [Google Scholar] [CrossRef] [Green Version]
- Rittmann, B.E. The Significance of Biofilms in Porous Media. Water Resour. Res. 1993, 29, 2195–2202. [Google Scholar] [CrossRef]
- Chittoori, B.C.S.; Moghal, A.A.B.; Pedarla, A.; Al-Mahbashi, A.M. Effect of Unit Weight on Porosity and Consolidation Characteristics of Expansive Clays. J. Test. Eval. 2017, 45, 94–104. [Google Scholar] [CrossRef]
- Soon, N.W.; Lee, L.M.; Khun, T.C.; Ling, H.S. Factors Affecting Improvement in Engineering Properties of Residual Soil through Microbial-Induced Calcite Precipitation. J. Geotech. Geoenviron. Eng. 2014, 140, 04014006. [Google Scholar] [CrossRef]
- Moghal, A.A.B.; Lateef, M.A.; Abu Sayeed Mohammed, S.; Ahmad, M.; Usman, A.R.A.; Almajed, A. Heavy Metal Immobilization Studies and Enhancement in Geotechnical Properties of Cohesive Soils by EICP Technique. Appl. Sci. 2020, 10, 7568. [Google Scholar] [CrossRef]
- Ragusa, S.R.; de Zoysa, D.S.; Rengasamy, P. The Effect of Microorganisms, Salinity and Turbidity on Hydraulic Conductivity of Irrigation Channel Soil. Irrig. Sci. 1994, 15, 159–166. [Google Scholar] [CrossRef]
- Cunningham, A.B.; Characklis, W.G.; Abedeen, F.; Crawford, D. Influence of Biofilm Accumulation on Porous Media Hydrodynamics. Environ. Sci. Technol. 1991, 25, 1305–1311. [Google Scholar] [CrossRef]
- Van Paassen, L.A. Biogrout, Ground Improvement by Microbial Induced Carbonate Precipitation. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2009. [Google Scholar]
- Ivanov, V.; Chu, J.; Naeimi, M.; Stabnikov, V.; He, J. Iron-Based Bio-Grout for Soil Improvement and Land Reclamation. In Proceedings of the 2nd international Conference on Sustainable Construction Materials and Technologies, Ancone, Italy, 28–30 June 2010; pp. 415–420. [Google Scholar]
- Al Qabany, A.; Soga, K. Effect of Chemical Treatment Used in MICP on Engineering Properties of Cemented Soils. In Proceedings of the Bio- and Chemo-Mechanical Processes in Geotechnical Engineering-Geotechnique Symposium in Print 2013, London, UK, 1 January 2013; pp. 107–115. [Google Scholar] [CrossRef]
- Ivanov, V.; Chu, J. Applications of Microorganisms to Geotechnical Engineering for Bioclogging and Biocementation of Soil in Situ. Rev. Environ. Sci. Biotechnol. 2008, 7, 139–153. [Google Scholar] [CrossRef]
- Seed, H.B.; Idriss, I.M. Simplified Procedure for Evaluating Soil Liquefaction Potential. J. Soil Mech. Found. Div. 1971, 97, 1249–1273. [Google Scholar] [CrossRef]
- Sharma, M.; Satyam, N.; Reddy, K.R. State of the Art Review of Emerging and Biogeotechnical Methods for Liquefaction Mitigation in Sands. J. Hazard. Toxic Radioact. Waste 2021, 25, 03120002. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, N.; Cai, G.; Jin, Y.; Ding, N.; Shen, D. Review of Ground Improvement Using Microbial Induced Carbonate Precipitation (MICP). Mar. Georesour. Geotechnol. 2017, 35, 1135–1146. [Google Scholar] [CrossRef]
- Montoya, B.M.; Dejong, J.T.; Boulanger, R.W. Dynamic Response of Liquefiable Sand Improved by Microbial-Induced Calcite Precipitation. Géotechnique 2013, 63, 302–312. [Google Scholar] [CrossRef]
- Zamani, A.; Montoya, B.M. Shearing and Hydraulic Behavior of MICP Treated Silty Sand. Geotech. Front. 2017, 290–299. [Google Scholar] [CrossRef]
- Warren, L.A.; Maurice, P.A.; Parmar, N.; Ferris, F.G. Microbially Mediated Calcium Carbonate Precipitation: Implications for Interpreting Calcite Precipitation and for Solid-Phase Capture of Inorganic Contaminants. Geomicrobiol. J. 2001, 18, 93–115. [Google Scholar] [CrossRef]
- Dixit, R.; Wasiullah; Malaviya, D.; Pandiyan, K.; Singh, U.B.; Sahu, A.; Shukla, R.; Singh, B.P.; Rai, J.P.; Sharma, P.K.; et al. Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes. Sustainability 2015, 7, 2189–2212. [Google Scholar] [CrossRef] [Green Version]
- Ali, N.; Hameed, A.; Ahmed, S. Physicochemical Characterization and Bioremediation Perspective of Textile Effluent, Dyes and Metals by Indigenous Bacteria. J. Hazard. Mater. 2009, 164, 322–328. [Google Scholar] [CrossRef]
- Torres-Aravena, Á.E.; Duarte-Nass, C.; Azócar, L.; Mella-Herrera, R.; Rivas, M.; Jeison, D. Can Microbially Induced Calcite Precipitation (MICP) through a Ureolytic Pathway Be Successfully Applied for Removing Heavy Metals from Wastewaters? Crystals 2018, 8, 438. [Google Scholar] [CrossRef] [Green Version]
- Ran, D.; Kawasaki, S. Effective Use of Plant-Derived Urease in the Field of Geoenvironmental/Geotechnical Engineering. J. Civ. Environ. Eng. 2016, 6, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Aziz, H.A.; Adlan, M.N.; Ariffin, K.S. Heavy Metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) Removal from Water in Malaysia: Post Treatment by High Quality Limestone. Bioresour. Technol. 2008, 99, 1578–1583. [Google Scholar] [CrossRef]
- Yavuz, O.; Guzel, R.; Aydin, F.; Tegin, I.; Ziyadanogullari, R. Removal of Cadmium and Lead from Aqueous Solution by Calcite. Pol. J. Environ. Stud. 2007, 16, 467–471. [Google Scholar]
- Moghal, A.A.B.; Reddy, K.R.; Mohammed, S.A.S.; Al-Shamrani, M.A.; Zahid, W.M. Lime-Amended Semi-Arid Soils in Retaining Copper, Lead, and Zinc from Aqueous Solutions. Water. Air. Soil Pollut. 2016, 227, 372. [Google Scholar] [CrossRef]
- Moghal, A.; Mohammed, S.; Al-Shamrani, M.; Zahid, W. Retention Studies on Arsenic from Aqueous Solutions by Lime Treated Semi Arid Soils. Int. J. Geomate 2017, 12. [Google Scholar] [CrossRef]
- Moghal, A.A.B.; Reddy, K.R.; Mohammed, S.A.S.; Al-Shamrani, M.A.; Zahid, W.M. Sorptive Response of Chromium (Cr+6) and Mercury (Hg+2) From Aqueous Solutions Using Chemically Modified Soils. J. Test. Eval. 2017, 45, 105–119. [Google Scholar] [CrossRef]
- Liu, R.; Yu, Y.; Liu, X.; Guan, Y.; Chen, L.; Lian, B. Adsorption of Ni2+ and Cu2+ Using Bio-Mineral: Adsorption Isotherms and Mechanisms. Geomicrobiol. J. 2018, 35, 742–748. [Google Scholar] [CrossRef]
- Kulczycki, E.; Fowle, D.A.; Fortin, D.; Ferris, F.G. Sorption of Cadmium and Lead by Bacteria–Ferrihydrite Composites. Geomicrobiol. J. 2005, 22, 299–310. [Google Scholar] [CrossRef]
- Pan, X.; Chen, Z.; Li, L.; Rao, W.; Xu, Z.; Guan, X. Microbial Strategy for Potential Lead Remediation: A Review Study. World J. Microbiol. Biotechnol. 2017, 33, 35. [Google Scholar] [CrossRef]
- Velmurugan, N.; Hwang, G.; Sathishkumar, M.; Choi, T.K.; Lee, K.-J.; Oh, B.-T.; Lee, Y.-S. Isolation, Identification, Pb(II) Biosorption Isotherms and Kinetics of a Lead Adsorbing Penicillium Sp. MRF-1 from South Korean Mine Soil. J. Environ. Sci. 2010, 22, 1049–1056. [Google Scholar] [CrossRef]
- Nathan, V.K.; Rani, M.E.; Gunaseeli, R.; Kannan, N.D. Enhanced Biobleaching Efficacy and Heavy Metal Remediation through Enzyme Mediated Lab-Scale Paper Pulp Deinking Process. J. Clean. Prod. 2018, 203, 926–932. [Google Scholar] [CrossRef]
- Mazzei, L.; Musiani, F.; Ciurli, S. The Structure-Based Reaction Mechanism of Urease, a Nickel Dependent Enzyme: Tale of a Long Debate. JBIC J. Biol. Inorg. Chem. 2020, 25, 829–845. [Google Scholar] [CrossRef]
- Lauchnor, E.G.; Schultz, L.N.; Bugni, S.; Mitchell, A.C.; Cunningham, A.B.; Gerlach, R. Bacterially Induced Calcium Carbonate Precipitation and Strontium Coprecipitation in a Porous Media Flow System. Environ. Sci. Technol. 2013, 47, 1557–1564. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, A.C.; Ferris, F.G. The Coprecipitation of Sr into Calcite Precipitates Induced by Bacterial Ureolysis in Artificial Groundwater: Temperature and Kinetic Dependence. Geochim. Cosmochim. Acta 2005, 69, 4199–4210. [Google Scholar] [CrossRef]
- Dhami, N.K.; Reddy, M.S.; Mukherjee, A. Biomineralization of Calcium Carbonates and Their Engineered Applications: A Review. Front. Microbiol. 2013, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.M.; Chen, T.C.; Yeh, K.J.; Shue, M.F. Stabilization of an Elevated Heavy Metal Contaminated Site. J. Hazard. Mater. 2001, 88, 63–74. [Google Scholar] [CrossRef]
- Achal, V.; Pan, X.; Fu, D.Z. Bioremediation of Pb-Contaminated Soil Based on Microbially Induced Calcite Precipitation. J. Microbiol. Biotechnol. 2012, 22, 244–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumari, D.; Qian, X.-Y.; Pan, X.; Achal, V.; Li, Q.; Gadd, G.M. Chapter Two-Microbially-induced Carbonate Precipitation for Immobilization of Toxic Metals. In Advances in Applied Microbiology; Sariaslani, S., Gadd, G.M., Eds.; Academic Press: Cambridge, MA, USA, 2016; Volume 94, pp. 79–108. [Google Scholar] [CrossRef] [Green Version]
- Cuaxinque-Flores, G.; Aguirre-Noyola, J.L.; Hernández-Flores, G.; Martínez-Romero, E.; Romero-Ramírez, Y.; Talavera-Mendoza, O. Bioimmobilization of Toxic Metals by Precipitation of Carbonates Using Sporosarcina Luteola: An in Vitro Study and Application to Sulfide-Bearing Tailings. Sci. Total Environ. 2020, 724, 138124. [Google Scholar] [CrossRef] [PubMed]
- Çolak, F.; Atar, N.; Yazıcıoğlu, D.; Olgun, A. Biosorption of Lead from Aqueous Solutions by Bacillus Strains Possessing Heavy-Metal Resistance. Chem. Eng. J. 2011, 173, 422–428. [Google Scholar] [CrossRef]
- Bueno, B.Y.M.; Torem, M.L.; de Carvalho, R.J.; Pino, G.A.H.; de Mesquita, L.M.S. Fundamental Aspects of Biosorption of Lead (II) Ions onto a Rhodococcus Opacus Strain for Environmental Applications. Miner. Eng. 2011, 24, 1619–1624. [Google Scholar] [CrossRef]
- Kumar, R.; Bhatia, D.; Singh, R.; Rani, S.; Bishnoi, N.R. Sorption of Heavy Metals from Electroplating Effluent Using Immobilized Biomass Trichoderma Viride in a Continuous Packed-Bed Column. Int. Biodeterior. Biodegrad. 2011, 65, 1133–1139. [Google Scholar] [CrossRef]
- Kiran, B.; Thanasekaran, K. Metal Tolerance of an Indigenous Cyanobacterial Strain, Lyngbya Putealis. Int. Biodeterior. Biodegrad. 2011, 65, 1128–1132. [Google Scholar] [CrossRef]
- Forte Giacobone, A.F.; Rodriguez, S.A.; Burkart, A.L.; Pizarro, R.A. Microbiological Induced Corrosion of AA 6061 Nuclear Alloy in Highly Diluted Media by Bacillus Cereus RE 10. Int. Biodeterior. Biodegrad. 2011, 65, 1161–1168. [Google Scholar] [CrossRef]
- Ji, Y.; Gao, H.; Sun, J.; Cai, F. Experimental Probation on the Binding Kinetics and Thermodynamics of Au(III) onto Bacillus Subtilis. Chem. Eng. J. 2011, 172, 122–128. [Google Scholar] [CrossRef]
- Naik, M.M.; Pandey, A.; Dubey, S.K. Pseudomonas Aeruginosa Strain WI-1 from Mandovi Estuary Possesses Metallothionein to Alleviate Lead Toxicity and Promotes Plant Growth. Ecotoxicol. Environ. Saf. 2012, 79, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Joshi, S.R.; Mandal, T.; Halder, G. Insight into Cr6+ Reduction Efficiency of Rhodococcus Erythropolis Isolated from Coalmine Waste Water. Chemosphere 2017, 167, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Black, R.; Sartaj, M.; Mohammadian, A.; Qiblawey, H.A.M. Biosorption of Pb and Cu Using Fixed and Suspended Bacteria. J. Environ. Chem. Eng. 2014, 2, 1663–1671. [Google Scholar] [CrossRef]
- Ghosh, A.; Saha, P.D. Optimization of Copper Bioremediation by Stenotrophomonas Maltophilia PD2. J. Environ. Chem. Eng. 2013, 1, 159–163. [Google Scholar] [CrossRef]
- Prithviraj, D.; Deboleena, K.; Neelu, N.; Noor, N.; Aminur, R.; Balasaheb, K.; Abul, M. Biosorption of Nickel by Lysinibacillus Sp. BA2 Native to Bauxite Mine. Ecotoxicol. Environ. Saf. 2014, 107, 260–268. [Google Scholar] [CrossRef]
- Rodríguez-Tirado, V.; Green-Ruiz, C.; Gómez-Gil, B. Cu and Pb Biosorption on Bacillus Thioparans Strain U3 in Aqueous Solution: Kinetic and Equilibrium Studies. Chem. Eng. J. 2012, 181–182, 352–359. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, Z.; Cheng, Y.; Pan, D.; Pan, X.; Yu, M.; Pan, Z.; Lin, Z.; Guan, X.; Wu, Z. Cr(VI) Uptake Mechanism of Bacillus Cereus. Chemosphere 2012, 87, 211–216. [Google Scholar] [CrossRef]
- Karthik, C.; Ramkumar, V.S.; Pugazhendhi, A.; Gopalakrishnan, K.; Arulselvi, P.I. Biosorption and Biotransformation of Cr(VI) by Novel Cellulosimicrobium Funkei Strain AR6. J. Taiwan Inst. Chem. Eng. 2017, 70, 282–290. [Google Scholar] [CrossRef]
- Huang, F.; Dang, Z.; Guo, C.-L.; Lu, G.-N.; Gu, R.R.; Liu, H.-J.; Zhang, H. Biosorption of Cd(II) by Live and Dead Cells of Bacillus Cereus RC-1 Isolated from Cadmium-Contaminated Soil. Colloids Surf. B Biointerfaces 2013, 107, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Parellada, E.A.; Ramos, A.N.; Ferrero, M.; Cartagena, E.; Bardón, A.; Valdez, J.C.; Neske, A. Squamocin Mode of Action to Stimulate Biofilm Formation of Pseudomonas Plecoglossicida J26, a PAHs Degrading Bacterium. Int. Biodeterior. Biodegrad. 2011, 65, 1066–1072. [Google Scholar] [CrossRef]
- Kumari, D.; Pan, X.; Lee, D.-J.; Achal, V. Immobilization of Cadmium in Soil by Microbially Induced Carbonate Precipitation with Exiguobacterium Undae at Low Temperature. Int. Biodeterior. Biodegrad. 2014, 94, 98–102. [Google Scholar] [CrossRef]
- Chandra, A.; Ravi, K. Application of Enzyme-Induced Carbonate Precipitation (EICP) to Improve the Shear Strength of Different Type of Soils. In Problematic Soils and Geoenvironmental Concerns; Latha Gali, M., Raghuveer Rao, P., Eds.; Lecture Notes in Civil Engineering; Springer: Singapore, 2021; Volume 88, pp. 617–632. ISBN 9789811562365. [Google Scholar]
- Kelly, J.T.; Reff, A.; Gantt, B. A Method to Predict PM2.5 Resulting from Compliance with National Ambient Air Quality Standards. Atmos. Environ. 2017, 162, 1–10. [Google Scholar] [CrossRef]
- Shen, J.; Gao, Z.; Ding, W.; Yu, Y. An Investigation on the Effect of Street Morphology to Ambient Air Quality Using Six Real-World Cases. Atmos. Environ. 2017, 164, 85–101. [Google Scholar] [CrossRef]
- Watson, J.G.; Chow, J.C.; Mathai, C.V. Receptor Models in Air Resources Management: A Summary of the APCA International Specialty Conference. JAPCA 1989, 39, 419–426. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Miao, L.; Yuan, J.; Wang, H.; Wu, L. Application of Enzymatic Calcification for Dust Control and Rainfall Erosion Resistance Improvement. Sci. Total Environ. 2021, 759, 143468. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-M.; Chou, C.-M.; Su, K.-T.; Tseng, C.-H. Effectiveness of Street Sweeping and Washing for Controlling Ambient TSP. Atmos. Environ. 2005, 39, 1891–1902. [Google Scholar] [CrossRef]
- Zhan, Q.; Qian, C.; Yi, H. Microbial-Induced Mineralization and Cementation of Fugitive Dust and Engineering Application. Constr. Build. Mater. 2016, 121, 437–444. [Google Scholar] [CrossRef]
- Naeimi, M.; Chu, J. Comparison of Conventional and Bio-Treated Methods as a Dust Suppressant. Environ. Sci. Pollut. Res. 2017, 24. [Google Scholar] [CrossRef]
- Fan, Y.; Hu, X.; Zhao, Y.; Wu, M.; Wang, S.; Wang, P.; Xue, Y.; Zhu, S. Urease Producing Microorganisms for Coal Dust Suppression Isolated from Coal: Characterization and Comparative Study. Adv. Powder Technol. 2020, 31, 4095–4106. [Google Scholar] [CrossRef]
- Song, W.; Yang, Y.; Qi, R.; Li, J.; Pan, X. Suppression of Coal Dust by Microbially Induced Carbonate Precipitation Using Staphylococcus Succinus. Environ. Sci. Pollut. Res. 2019, 26, 35968–35977. [Google Scholar] [CrossRef] [PubMed]
- Raveh-Amit, H.; Tsesarsky, M. Biostimulation in Desert Soils for Microbial-Induced Calcite Precipitation. Appl. Sci. 2020, 10, 2905. [Google Scholar] [CrossRef] [Green Version]
- Woolley, M.A.; van Paassen, L.; Kavazanjian, E. Impact on Surface Hydraulic Conductivity of EICP Treatment for Fugitive Dust Mitigation. Geo-Congress 2020, 132–140. [Google Scholar] [CrossRef]
- Chen, R.; Lee, I.; Zhang, L. Biopolymer Stabilization of Mine Tailings for Dust Control. J. Geotech. Geoenviron. Eng. 2015, 141, 04014100. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, L.; Budhu, M. Biopolymer Stabilization of Mine Tailings. J. Geotech. Geoenviron. Eng. 2013, 139, 1802–1807. [Google Scholar] [CrossRef]
- Mendez, M.O.; Maier, R.M. Phytostabilization of Mine Tailings in Arid and Semiarid Environments—An Emerging Remediation Technology. Environ. Health Perspect. 2008, 116, 278–283. [Google Scholar] [CrossRef] [Green Version]
- Bolander, P.; Yamada, A. Dust Palliative Selection and Application Guide; USDA San Dimas Technology and Development Center: San Dimas, CA, USA, 1999.
- Chen, R.; Ding, X.; Lai, H.; Zhang, L. Improving Dust Resistance of Mine Tailings Using Green Biopolymer. Environ. Geotech. 2020, 1–10. [Google Scholar] [CrossRef]
- Govarthanan, M.; Lee, K.-J.; Cho, M.; Kim, J.S.; Kamala-Kannan, S.; Oh, B.-T. Significance of Autochthonous Bacillus Sp. KK1 on Biomineralization of Lead in Mine Tailings. Chemosphere 2013, 90, 2267–2272. [Google Scholar] [CrossRef]
- Zamani, A.; Liu, Q.; Montoya, B.M. Effect of Microbial Induced Carbonate Precipitation on the Stability of Mine Tailings. IFCEE 2018, 291–300. [Google Scholar] [CrossRef]
- Carmona, J.P.S.F.; Venda Oliveira, P.J.; Lemos, L.J.L.; Pedro, A.M.G. Improvement of a Sandy Soil by Enzymatic Calcium Carbonate Precipitation. Proc. Inst. Civ. Eng. Geotech. Eng. 2017, 171, 3–15. [Google Scholar] [CrossRef]
- Hamdan, N.; Zhao, Z.; Mujica, M.; Kavazanjian, E.; He, X. Hydrogel-Assisted Enzyme-Induced Carbonate Mineral Precipitation. J. Mater. Civ. Eng. 2016, 28, 04016089. [Google Scholar] [CrossRef]
Sl No | Bacteria Type | Type of Soil | Maximum UCS Value Obtained after Treatment (kPa) | UCS Value for Untreated Soil (kPa) | Reference |
---|---|---|---|---|---|
1 | Sporosarcina pasteurii | Poorly graded sand | 930 | 85 | [85] |
2 | Jack Bean Urease | Ottawa 20–30 sand | 88.8 | - | [40] |
3 | Bacillus subtilis Bacillus pasteurii | Dredged soils | 735 820 | 280 | [93] |
4 | Pararhodobacter sp. | Fine grained sand Coarse sand Mixed sand | 1330 2870 2800 | - | [97] |
5 | Jack Bean Urease | Silica sand | 1745 | - | [75] |
6 | Jack Bean Urease | Red soil Black soil | 440 226.1 | 70 13 | [94] |
8 | Sporosarcina pasteurii | Fine to medium-grain sand | 12,400 | - | [98] |
9 | Urease Enzyme | Silica sand | 380 | - | [99] |
10 | Urease Enzyme | Sand | 1600 | - | [100] |
11 | Urease Enzyme | Silica sand | 600 | - | [79] |
12 | Urease enzyme | F-60 silica sand Ottawa 20–30 sand | 529 391 | - | [38] |
13 | Sporosarcina pasteurii | Soft Clay | 43.31 | 17.89 | [95] |
14 | Sporosarcina pasteurii | Sand (commercially available) | 14,000 | - | [101] |
15 | Sporosarcina pasteurii | Fine grained soil (CL) Fine grained soil (CH) | 338.32 219.66 | 97.08 125.52 | [92] |
16 | Jack Bean Urease | Poorly graded silica sand | 555 | - | [102] |
17 | In-situ soil bacteria | Poorly-graded sands | 5300 | - | [103] |
18 | Urease enzyme from watermelon seeds | Mikawa sand | 3000 | - | [104] |
19 | Jack-bean extract | Nakdong River sand | 317 | 31.7 | [96] |
20 | Jack Bean urease | Ottawa sand | 1700 | - | [105] |
21 | Jack Bean urease | Ottawa 20–30 | 1600 | - | [106] |
22 | Terrazyme | Clay with low plasticity | 1073 | - | [107] |
Applied On | Bacteria Used | Reference |
---|---|---|
Toxic metals | Sporosarcina luteola | [154] |
Lead-contaminated mine wastes | Pararhodobacter sp. | [97] |
Lead | Bacillus (pumilus and cereus) | [155] |
Lead (II) | Rhodococcus opacus | [156] |
Zn(II), Ni(II) and Cr(VI) | Trichoderma viride | [157] |
Cobalt and copper | Lyngbya putealis | [158] |
AA 6061 nuclear alloy | Bacillus cereus RE 10 | [159] |
Au(III) | Bacillus subtilis | [160] |
Lead | Pseudomonas aeruginosa | [161] |
Cd, Ni and Pb | Urease Enzyme | [94,120] |
Cr6+ | Rhodococcus erythropolis | [162] |
Cu and Pb | Comamonas testosterone, Enterobacter ludwigii and Zoogloea ramigerais | [163] |
Copper | Stenotrophomonas maltophilia | [164] |
Nickel | Lysinibacillus sp. | [165] |
Pb and Cu | Bacillus thioparans | [166] |
Cr(VI) | Bacillus cereus | [167] |
Cr(VI) | Cellulosimicrobium funkei | [168] |
Cd(II) | Bacillus cereus RC-1 | [169] |
Polycyclic aromatic hydrocarbons (PAHs) | Pseudomonas plecoglossicida J26 | [170] |
Cadmium | Exiguobacterium undae | [171] |
Specimen Tested | Bio-Stabilizer | Reference |
---|---|---|
Coal dust | MICP (Urease microbes) | [180] |
Coal dust | MICP (Staphylococcus succinus) | [181] |
Desert soil | MICP (Indigenous bacteria) | [182] |
Sand | MICP (Sporosarcina pasteurii) | [179] |
Sand (well-graded) | MICP (Sporosarcina pasteurii) | [56] |
F60 silica sand | EICP (Urease enzyme) | [183] |
Ottawa F-60 fine grained uniform silica sand Well graded silty fine sand Mine tailings | EICP (Urease enzyme) | [78] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almajed, A.; Lateef, M.A.; Moghal, A.A.B.; Lemboye, K. State-of-the-Art Review of the Applicability and Challenges of Microbial-Induced Calcite Precipitation (MICP) and Enzyme-Induced Calcite Precipitation (EICP) Techniques for Geotechnical and Geoenvironmental Applications. Crystals 2021, 11, 370. https://doi.org/10.3390/cryst11040370
Almajed A, Lateef MA, Moghal AAB, Lemboye K. State-of-the-Art Review of the Applicability and Challenges of Microbial-Induced Calcite Precipitation (MICP) and Enzyme-Induced Calcite Precipitation (EICP) Techniques for Geotechnical and Geoenvironmental Applications. Crystals. 2021; 11(4):370. https://doi.org/10.3390/cryst11040370
Chicago/Turabian StyleAlmajed, Abdullah, Mohammed Abdul Lateef, Arif Ali Baig Moghal, and Kehinde Lemboye. 2021. "State-of-the-Art Review of the Applicability and Challenges of Microbial-Induced Calcite Precipitation (MICP) and Enzyme-Induced Calcite Precipitation (EICP) Techniques for Geotechnical and Geoenvironmental Applications" Crystals 11, no. 4: 370. https://doi.org/10.3390/cryst11040370
APA StyleAlmajed, A., Lateef, M. A., Moghal, A. A. B., & Lemboye, K. (2021). State-of-the-Art Review of the Applicability and Challenges of Microbial-Induced Calcite Precipitation (MICP) and Enzyme-Induced Calcite Precipitation (EICP) Techniques for Geotechnical and Geoenvironmental Applications. Crystals, 11(4), 370. https://doi.org/10.3390/cryst11040370