Preparation and Investigation of Pd and Bimetallic Pd-Sn Nanocrystals on γ-Al2O3
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Preparation of the γ-Al2O3 Support and Synthesis of Pd and Bimetallic Pd-Sn Nanoparticles on the γ-Al2O3 Surface.
3.2. Specific Surface Measurements-BET Method
3.3. Chemical Elemental Analysis-ICP-OES
3.4. Electron Microscopy Study and Local Elemental Analysis-TEM-EDX
3.5. Surface Analysis-XPS
3.6. Temperature-Programmed Reduction in H2-TPR-H2
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arora, N.; Thangavelu, K.; Karanikolos, G.N. Bimetallic nanoparticles for antimicrobial applications. Front. Chem. 2020, 8, 412. [Google Scholar] [CrossRef]
- Huynh, K.-H.; Pham, X.-H.; Kim, J.; Lee, S.H.; Chang, H.; Rho, W.-Y.; Jun, B.-H. Synthesis, properties, and biological applications of metallic alloy nanoparticles. Int. J. Mol. Sci. 2020, 21, 5174. [Google Scholar] [CrossRef] [PubMed]
- Srinoi, P.; Chen, Y.-T.; Vittur, V.; Marquez, M.D.; Lee, T.R. Bimetallic nanoparticles: Enhanced magnetic and optical properties for emerging biological application. Appl. Sci. 2018, 8, 1106. [Google Scholar] [CrossRef] [Green Version]
- Loza, K.; Heggen, M.; Epple, M. Synthesis, structure, properties, and applications of bimetallic nanoparticles of noble metals. Adv. Funct. Mater. 2020, 30, 1909260. [Google Scholar] [CrossRef] [Green Version]
- De França Bettencourt, G.M.; Degenhardt, J.; Torres, L.A.Z.; de Andrade Tanobe, V.O.; Soccol, C.R. Green biosynthesis of single and bimetallic nanoparticles of iron and manganese using bacterial auxin complex to act as plant bio-fertilizer. Biocatal. Agric. Biotechnol. 2020, 30, 101822. [Google Scholar] [CrossRef]
- Boote, B.W.; Byun, H.; Kim, J.H. Silver–gold bimetallic nanoparticles and their applications as optical materials. J. Nanosc. Nanotechnol. 2014, 14, 1563–1577. [Google Scholar] [CrossRef] [PubMed]
- Garfinkel, D.A.; Pakeltis, G.; Tang, N.; Ivanov, I.N.; Fowlkes, J.D.; Gilbert, D.A.; Rack, P.D. Optical and magnetic properties of Ag−Ni bimetallic nanoparticles assembled via pulsed laser-induced dewetting. ACS Omega 2020, 5, 19285–19292. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Guo, J.; Li, J.; Wei, J. Fabrication of bimetallic nanoparticles/multi-walled carbon nanotubes composites for microelectronic circuits. Carbon 2011, 49, 779–786. [Google Scholar] [CrossRef]
- Chaplin, B.P.; Reinhard, M.; Schneider, W.F.; Schuth, C.; Shapley, J.R.; Strathmann, T.J.; Werth, C.J. Critical review of Pd-based catalytic treatment of priority contaminants in water. Environ. Sci. Technol. 2012, 46, 3655–3670. [Google Scholar] [CrossRef]
- Ghosh, S.; Roy, S.; Naskar, J.; Kumar Kole, R. Process optimization for biosynthesis of mono and bimetallic alloy nanoparticle catalysts for degradation of dyes in individual and ternary mixture. Sci. Rep. 2020, 10, 277. [Google Scholar] [CrossRef]
- De, S.; Zhang, J.; Luque, R.; Yan, N. Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy Environ. Sci. 2016, 9, 3314–3347. [Google Scholar] [CrossRef] [Green Version]
- Gómez, J.C.C.; Moliner, R.; Lázaro, M.J. Palladium-based catalysts as electrodes for direct methanol fuel cells: A last ten years review. Catalysts 2016, 6, 130. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Porosoff, M.D.; Chen, J.G. Review of Pt-based bimetallic catalysis: From model surfaces to supported catalysts. Chem. Rev. 2012, 112, 5780–5817. [Google Scholar] [CrossRef]
- Zaleska-Medynska, A.; Marchelek, M.; Diak, M.; Grabowska, E. Noble metal-based bimetallic nanoparticles: The effect of the structure on the optical, catalytic and photocatalytic properties. Adv. Colloid Interface Sci. 2016, 229, 80–107. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, X. Morphology control of bimetallic nanostructures for electrochemical catalysts. Nanotechnol. Rev. 2013, 2, 487–514. [Google Scholar] [CrossRef]
- Shin, E.W.; Choi, C.H.; Chang, K.S.; Na, Y.H.; Moon, S.H. Properties of Si-modified Pd catalyst for selective hydrogenation of acetylene. Catal. Today 1998, 44, 137–143. [Google Scholar] [CrossRef]
- Kim, W.J.; Shin, E.W.; Kang, J.H.; Moon, S.H. Performance of Si-modified Pd catalyst in acetylene hydrogenation: Catalyst deactivation behavior. Appl. Catal. A Gen. 2003, 251, 305–313. [Google Scholar] [CrossRef]
- Santos Aires, F.J.C.; Cervantes, G.G.; Bertolini, J.C. Surface modification of Pd/α-Si3N4 catalysts through the solvent used during synthesis. Implications on the CO chemisorption properties and catalytic performances. Catal. Lett. 2009, 129, 266–272. [Google Scholar] [CrossRef]
- Rousset, J.L.; Stievano, L.; Santos Aires, F.J.C.; Geantet, C.; Renouprez, A.J.; Pellarin, M. Hydrogenation of tetralin in the presence of sulfur over γ-Al2O3 supported Pt, Pd and Pd-Pt model catalysts. J. Catal. 2001, 202, 163–168. [Google Scholar] [CrossRef]
- Maroun, F.; Ozanam, F.; Magnussen, O.M.; Behm, R.J. The role of atomic ensembles in the reactivity of bimetallic electrocatalysts. Science 2001, 293, 1811–1814. [Google Scholar] [CrossRef] [PubMed]
- Prinz, J.; Gaspari, R.; Stockl, Q.S.; Gille, P.; Armbruster, M.; Brune, H.; Groning, O.; Pignedoli, C.A.; Passerone, D.; Widmer, R. Ensemble effect evidenced by CO adsorption on the 3-Fold PdGa surfaces. J. Phys. Chem. C 2014, 118, 12260–12265. [Google Scholar] [CrossRef] [Green Version]
- Dupont, C.; Loffreda, D.; Delbecq, F.; Erhet, E.; Cadete Santos Aires, F.J.; Jugnet, Y. A high pressure PM-IRRAS study of CO and O2 coadsorption and reactivity on PtSn alloy surfaces. J. Phys. Chem. C 2008, 112, 10862–10867. [Google Scholar] [CrossRef]
- Jugnet, Y.; Loffreda, D.; Dupont, C.; Delbecq, F.; Erhet, E.; Santos Aires, F.J.C.; Mun, B.S.; Akgul, F.A.; Liu, Z. Promoter effect of early stage grown surface oxides: A near ambient pressure XPS study of CO oxidation on PtSn bimetallics. J. Phys. Chem. Lett. 2012, 3, 3707–3714. [Google Scholar] [CrossRef] [PubMed]
- Pattamakomsan, K.; Santos Aires, F.J.C.; Suriye, K.; Panpranot, J. Effects of impregnation solvent and reduction temperature on the catalytic performance of Pd/Al2O3 in the selective hydrogenation of 1,3-butadiene. React. Kinet. Mech. Catal. 2011, 103, 405–417. [Google Scholar] [CrossRef]
- Berthet, A.; Thomann, A.L.; Santos Aires, F.J.C.; Brun, M.; Deranlot, C.; Bertolini, J.C.; Rozenbaum, J.P.; Brault, P.; Andreazza, P. Comparison of Pd/(bulk SiC) catalysts prepared by atomic beam deposition and plasma sputtering deposition: Characterization and catalytic properties. J. Catal. 2000, 190, 49–59. [Google Scholar] [CrossRef]
- Cervantes, G.G.; Santos Aires, F.J.C.; Bertolini, J.C. Compared properties of Pd on thermo-conductor supports (SiC, Si3N4) and Pd on oxide supports (Al2O3, SiO2) for the 1,3-butadiene hydrogenation reaction. J. Catal. 2003, 214, 26–32. [Google Scholar] [CrossRef]
- Santos Aires, F.J.C.; Ramirez, S.; Cervantes, G.G.; Rogemond, E.; Bertolini, J.C. Application of Pd/α-Si3N4 catalysts to radiant panels using methane catalytic combustion to obtain infrared emission. Appl. Catal. A Gen. 2003, 238, 289–301. [Google Scholar] [CrossRef]
- Kurzina, I.; Santos Aires, F.J.C.; Bergeret, G.; Bertolini, J.C. Total oxidation of methane over Pd catalysts supported on silicon nitride. Influence of support nature. Chem. Eng. J. 2005, 107, 45–53. [Google Scholar] [CrossRef]
- Santos Aires, F.J.C.; Kurzina, I.; Cervantes, G.G.; Bertolini, J.C. Pd catalysts supported on silicon nitride for the combustion of methane: Influence of the crystalline phase, the amorphous fraction and the preparation method on the catalytic properties. Catal. Today 2006, 117, 518–524. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H.; Hu, Z.; Yao, M.; Li, Y. A review on the Pd-based three-way catalyst. Catal. Rev. Sci. Eng. 2015, 57, 79–144. [Google Scholar] [CrossRef]
- Silva, T.R.; de Oliveira, D.C.; Pal, T.; Domingos, J.B. The catalytic evaluation of bimetallic Pd-based nanocatalysts supported on ion exchange resin in nitro and alkyne reduction reactions. New J. Chem. 2019, 43, 7083–7092. [Google Scholar] [CrossRef]
- Biffis, A.; Centomo, P.; Del Zotto, A.; Zecca, M. Pd metal catalysts for cross-couplings and related reactions in the 21st century: A critical review. Chem. Rev. 2018, 118, 2249–2295. [Google Scholar] [CrossRef]
- Martin, R.; Buchwald, S.L. Palladium-catalyzed Suzuki-Miyaura cross-coupling reactions employing dialkylbiaryl phosphine ligands. Acc. Chem. Res. 2008, 41, 1461–1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pattamakomsan, K.; Ehret, E.; Morfin, F.; Gélin, P.; Jugnet, Y.; Prakash, S.; Bertolini, J.C.; Panpranot, J.; Santos Aires, F.J.C. Selective hydrogenation of 1,3-butadiene over Pd and Pd3Sn catalysts supported on different phases of alumina. Catal. Today 2011, 164, 28–33. [Google Scholar] [CrossRef]
- Nemsak, S.; Masek, K.; Matolin, V. RHEED and XPS study of Pd–Sn bimetallic system growth. Surf. Sci. 2007, 601, 4475–4478. [Google Scholar] [CrossRef]
- Skala, T.; Veltruska, K.; Sedlacek, L.; Masek, K.; Matolinova, I.; Matolin, V. Photoelectron-spectroscopic and reactivity investigation of thin Pd–Sn films prepared by magnetron sputtering. Appl. Surf. Sci. 2007, 253, 5400–5403. [Google Scholar] [CrossRef]
- Masek, K.; Mixa, M.; Nemsak, S.; Matolin, V. Study of the growth of supported Pd–Sn bimetallic nanoclusters. Thin Solid Films 2006, 515, 563–566. [Google Scholar] [CrossRef]
- Tsud, N.; Skala, T.; Sutara, F.; Veltruska, K.; Dudr, V.; Fabik, S.; Sedlacek, L.; Chab, V.; Prince, K.C.; Matolin, V. Electronic properties of Sn/Pd intermetallic compounds on Pd(110). Surf. Sci. 2005, 595, 138–150. [Google Scholar] [CrossRef]
- Tsud, N.; Johanek, V.; Stara, I.; Veltruska, K.; Matolin, V. XPS, ISS and TPD study of Pd Sn interactions on Pd–SnOx systems. Thin Solid Films 2001, 391, 204–208. [Google Scholar] [CrossRef]
- Skala, T.; Veltruska, K.; Moroseac, M.; Matolinova, I.; Cirera, A.; Matolin, V. Redox process of Pd–SnO2 system. Surf. Sci. 2004, 566–568, 1217–1221. [Google Scholar] [CrossRef]
- Matolin, V.; Matolinova, I.; Mori, T.; Yoshitake, M. Study of palladium interaction with magnetron sputtered SnO2 films. J. Surf. Sci. Nanotech. 2006, 4, 497–503. [Google Scholar] [CrossRef] [Green Version]
- Sales, E.A.; Bugli, G.; Ensuque, A.; Mendes, M.J.; Bozon-Verduraz, F. Palladium catalysts in the selective hydrogenation of hexa-1,5-diene and hexa-1,3-diene in the liquid phase. Effect of tin and silver addition Part 1. Preparation and characterization: From the precursor species to the final phases. Phys. Chem. Chem. Phys. 1999, 1, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Sales, E.A.; Jove, J.; Mendes, M.J.; Bozon-Verduraz, F. Palladium, Palladium–Tin, and Palladium–Silver Catalysts in the Selective Hydrogenation of Hexadienes: TPR, Mössbauer, and Infrared Studies of Adsorbed CO. J. Catal. 2000, 195, 88–95. [Google Scholar] [CrossRef]
- Verdier, S.; Didillon, B.; Morin, S.; Jumas, J.C.; Olivier-Fourcade, J.; Uzio, D. Pd–Sn/Al2O3 catalysts from colloidal oxide synthesis: I. Preparation of the catalysts. J. Catal. 2003, 218, 280–287. [Google Scholar] [CrossRef]
- Garron, A.; Lazar, K.; Epron, F. Effect of the support on tin distribution in Pd–Sn/Al2O3 and Pd–Sn/SiO2 catalysts for application in water denitration. Appl. Catal. B Environ. 2005, 59, 57–69. [Google Scholar] [CrossRef]
- Palomares, A.E.; Franch, C.; Corma, A. Nitrates removal from polluted aquifers using (Sn or Cu)/Pd catalysts in a continuous reactor. Catal. Today 2010, 149, 348–351. [Google Scholar] [CrossRef]
- Pintar, A.; Batista, J.; Musevic, I. Palladium-copper and palladium-tin catalysts in the liquid phase nitrate hydrogenation in a batch-recycle reactor. Appl. Catal. B Environ. 2004, 52, 49–60. [Google Scholar] [CrossRef]
- Fraga, M.A.; de Souza, E.S.; Villain, F.; Appel, L.G. Addition of La and Sn to alumina-supported Pd catalysts for methane combustion. Appl. Catal. A Gen. 2004, 259, 57–63. [Google Scholar] [CrossRef]
- Lovon-Quintana, J.J.; Santos, J.B.O.; Lovon, A.S.P.; La-Salvia, N.; Valença, G.P. Low-temperature oxidation of methane on Pd-Sn/ZrO2 catalysts. J. Mol. Catal. A Chem. 2016, 411, 117–127. [Google Scholar] [CrossRef]
- Vasilchenko, D.B.; Gulyaev, R.V.; Slavinskaya, E.M.; Stonkus, O.A.; Shubin, Y.V.; Korenev, S.V.; Boronin, A.I. Effect of Pd deposition procedure on activity of Pd/Ce0.5Sn0.5O2 catalysts for low-temperature CO oxidation. Catal. Commun. 2016, 73, 34–38. [Google Scholar] [CrossRef]
- Rao, C.; Peng, C.; Peng, H.; Zhang, L.; Liu, W.; Wang, X.; Zhang, N.; Wu, P. In Situ Embedded Pseudo Pd–Sn Solid Solution in Micropores Silica with Remarkable Catalytic Performance for CO and Propane Oxidation. ACS Appl. Mater. Interfaces 2018, 10, 9220–9224. [Google Scholar] [CrossRef] [PubMed]
- Freakley, S.J.; He, Q.; Harrhy, J.H.; Lu, L.; Crole, D.A.; Morgan, D.J.; Ntainjua, E.N.; Edwards, J.K.; Carley, A.F.; Borisevich, A.Y.; et al. Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity. Science 2016, 351, 965–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vicente, A.; Lafaye, G.; Especel, C.; Marecot, P.; Williams, C.T. The relationship between the structural properties of bimetallic Pd–Sn/SiO2 catalysts and their performance for selective citral hydrogenation. J. Catal. 2011, 283, 133–142. [Google Scholar] [CrossRef]
- Johnston, S.K.; Cherkasov, N.; Perez-Barrado, E.; Aho, A.; Murzin, D.Y.; Ibhadon, A.O.; Francesconi, M.G. Pd3Sn nanoparticles on TiO2 and ZnO supports as catalysts for semi-hydrogenation: Synthesis and catalytic performance. Appl. Catal. A Gen. 2017, 544, 40–45. [Google Scholar] [CrossRef]
- Lanza, R.; Bersani, M.; Conte, L.; Martucci, A.; Canu, P.; Guglielmi, M.; Mattei, G.; Bello, V.; Centazzo, M.; Rosei, R. Effect of Crystalline Phase and Composition on the Catalytic Properties of PdSn Bimetallic Nanoparticles in the PROX Reaction. J. Phys. Chem. C 2014, 118, 25392–25402. [Google Scholar] [CrossRef]
- Willis, J.J.; Goodman, E.D.; Wu, L.; Riscoe, A.R.; Martins, P.; Tassone, C.J.; Cargnello, M. Systematic Identification of Promoters for Methane Oxidation Catalysts Using Size- and Composition-Controlled Pd-Based Bimetallic Nanocrystals. J. Am. Chem. Soc. 2017, 139, 11989–11997. [Google Scholar] [CrossRef]
- Zhang, J.; Shao, Q.; Zhang, Y.; Bai, S.; Feng, Y.; Huang, X. Promoting the Direct H2O2 Generation Catalysis by Using Hollow Pd–Sn Intermetallic Nanoparticles. Small 2018, 14, 1703990. [Google Scholar] [CrossRef]
- Li, F.; Shao, Q.; Hu, M.; Chen, Y.; Huang, X. Hollow Pd–Sn Nanocrystals for Efficient Direct H2O2 Synthesis: The Critical Role of Sn on Structure Evolution and Catalytic Performance. ACS Catal. 2018, 8, 3418–3423. [Google Scholar] [CrossRef]
- Liao, F.; Lo, T.W.B.; Tsang, S.C.E. Recent developments in palladium-based bimetallic catalysts. ChemCatChem 2015, 7, 1998–2014. [Google Scholar] [CrossRef]
- Sharma, G.G.; Kumar, A.; Sharma, S.; Naushad, M.; Dwivedi, R.P.; Alothman, Z.A.; Mola, G.T. Novel development of nanoparticles to bimetallic nanoparticles and their composites: A review. J. King Saud Univ. Sci. 2019, 31, 257–269. [Google Scholar] [CrossRef]
- Fan, J.; Du, H.; Zhao, Y.; Wang, Q.; Liu, Y.; Li, D.; Feng, J. Recent progress on rational design of bimetallic Pd based catalysts and their advanced catalysis. ACS Catal. 2020, 10, 13560–13583. [Google Scholar] [CrossRef]
- Fuchs, G.; Treilleux, M.; Aires, F.S.; Cabaud, B.; Mélinon, P.; Hoareau, A. Cluster-beam deposition for high-quality thin films. Phys. Rev. A 1989, 40, 6128–6129. [Google Scholar] [CrossRef]
- Rousset, J.L.; Cadrot, A.M.; Aires, F.S.; Renouprez, A.; Mélinon, P.; Perez, A.; Pellarin, M.; Vialle, J.L.; Broyer, M. Preparation of bimetallic PtnPtm supported clusters with well defined stochiometry. Surf. Rev. Lett. 1996, 3, 1171–1176. [Google Scholar] [CrossRef]
- Rousset, J.L.; Stievano, L.; Santos Aires, F.J.C.; Geantet, C.; Renouprez, A.J.; Pellarin, M. Hydrogenation of toluene over γ-Al2O3 supported Pt, Pd and Pd-Pt model catalysts obtained by laser vaporisation of bulk metals. J. Catal. 2001, 197, 335–343. [Google Scholar] [CrossRef]
- Mahfouz, R.; Santos Aires, F.J.C.; Brenier, A.; Ehret, E.; Roumie, M.; NSouli, B.; Jacquier, B.; Bertolini, J.C. Elaboration and characterization of bimetallic nanoparticles obtained by laser ablation of Ni75Pd25 and Au75Ag25 targets in water. J. Nanopart. Res. 2010, 12, 3123–3136. [Google Scholar] [CrossRef]
- Pongthawornsakun, B.; Mekasuwandumrong, O.; Santos Aires, F.J.C.; Buechel, R.; Baiker, A.; Pratsinis, S.; Panpranot, J. Variability of particle configurations achievable by 2-nozzle flame syntheses of the Au-Pd-TiO2 system and their catalytic behaviors in the selective hydrogenation of acetylene. Appl. Catal. A Gen. 2018, 549, 1–7. [Google Scholar] [CrossRef]
- Zhang, J.; Wan, L.; Liu, L.; Deng, Y.; Zhong, C.; Hu, W. PdPt bimetallic nanoparticles enabled by shape control with halide ions and their enhanced catalytic activities. Nanoscale 2016, 8, 3962–3972. [Google Scholar] [CrossRef] [PubMed]
- Ehret, E.; Beyou, E.; Mamontov, G.V.; Bugrova, T.A.; Prakash, S.; Aouine, M.; Domenichini, B.; Santos Aires, F.J.C. Bimetallic PdAg nanoparticle arrays from monolayer films of diblock copolymer micelles. Nanoscale 2015, 7, 13239–13248. [Google Scholar] [CrossRef] [PubMed]
- Yermakov, Y.I. Supported catalysts obtained by interaction of organometallic compounds of transition elements with oxide supports. Catal. Rev. Sci. Eng. 1976, 13, 77–120. [Google Scholar] [CrossRef]
- Yermakov, Y.I.; Kuuznetsov, B.N. Supported metallic catalysts prepared by decomposition of surface ornagometallic complexes. J. Mol. Catal. 1980, 9, 13–40. [Google Scholar] [CrossRef]
- Berdala, J.; Freund, E.; Lynch, J. Genesis of the metallic phase in a highly dispersed catalyst formed from Pt acetylacetonate on alumine. J. Phys. Colloq. 1986, 47, 265–268. [Google Scholar] [CrossRef] [Green Version]
- Faudon, J.F.; Senoq, F.; Bergeret, G.; Moraweck, B.; Clugnet, G.; Nicot, C.; Renouprez, A. Properties of supported Pd-Ni catalysts prepared by coexchange and by organometallic chemistry. J. Catal. 1993, 144, 460–471. [Google Scholar] [CrossRef]
- Renouprez, A.; Lebas, K.; Bergeret, G. A new method of direct synthesis of bimetallic phases: Silica supported Pd-Cu catalysts from mixed acetylacetonates. J. Mol. Catal. A Chem. 1997, 120, 217–225. [Google Scholar] [CrossRef]
- Renouprez, A.J.; Trillat, J.F.; Moraweck, B.; Massardier, J.; Bergeret, G. Pd-Mn silica supported catalysts: 1. formation of the bimetallic particles. J. Catal. 1998, 179, 390–399. [Google Scholar] [CrossRef]
- Renouprez, A.J.; Malhomme, A.; Massardier, J.; Cattenot, M.; Bergeret, G. Sulphur resistant palladium-platinum catalysts prepared from mixed acetylacetonates. Stud. Surf. Sci. Catal. 2000, 130, 2579–2584. [Google Scholar]
- White, M.G. Uses of polynuclear metal complexes to develop designed dispersions of supported metal oxides. Catal. Today 1993, 18, 73–109. [Google Scholar] [CrossRef]
- Wong, A.; Liu, Q.; Griffin, S.; Nicholls, A.; Regalbuto, J.R. Synthesis of ultrasmall, homogeneously alloyed, bimetallic nanoparticles on silica supports. Science 2017, 358, 1427–1430. [Google Scholar] [CrossRef] [Green Version]
- Ivanova, A.S.; Slavinskaya, E.M.; Gulyaev, R.V.; Zaikovskii, V.I.; Stonkus, O.A.; Danilova, I.G.; Plyasova, L.M.; Polukhina, I.A.; Boronin, A.I. Metal–support interactions in Pt/Al2O3 and Pd/Al2O3 catalysts for CO oxidation. Appl. Catal. B Environ. 2010, 97, 57–71. [Google Scholar] [CrossRef]
- Slavinskaya, E.M.; Stonkus, O.A.; Gulyaev, R.V.; Ivanova, A.S.; Zaikovskii, V.I.; Kuznetsov, P.A.; Boronin, A.I. Structural and chemical states of palladium in Pd/Al2O3 catalysts under self-sustained oscillations in reaction of CO oxidation. Appl. Catal. A Gen. 2011, 401, 83–97. [Google Scholar] [CrossRef]
- D’Arino, M.; Pinna, F.; Strukul, G. Nitrate and nitrite hydrogenation with Pd and Pt/SnO2 catalysts: The effect of the support porosity and the role of carbon dioxide in the control of selectivity. Appl. Catal. B Environ. 2004, 53, 161–168. [Google Scholar] [CrossRef]
- Delage, M.; Didillon, B.; Huiban, Y.; Lynch, J.; Uzio, D. Highly dispersed Pd based catalysts for selective hydrogenation reactions. Stud. Surf. Sci. Catal. 2000, 130, 1019–1024. [Google Scholar]
- Bratan, V.; Munteanu, C.; Hornoiu, C.; Vasile, A.; Papa, F.; State, R.; Preda, S.; Culita, D.; Ionescu, N.I. CO oxidation over Pd supported catalysts—In situ study of the electric and catalytic properties. Appl. Catal. B Environ. 2017, 207, 166–173. [Google Scholar] [CrossRef]
- Fang, X.; Fang, D. Performance of palladium–tin bimetallic catalysts supported on activated carbon for the hydrodechlorination of 4-chlorophenol. RSC Adv. 2017, 7, 40437–40443. [Google Scholar] [CrossRef] [Green Version]
- Arana, J.; de la Piscina, P.R.; Llorca, J.; Sales, J.; Homs, N.; Fierro, J.L.G. Bimetallic Silica-Supported Catalysts Based on Ni−Sn, Pd−Sn, and Pt−Sn as Materials in the CO Oxidation Reaction. Chem. Mater. 1998, 10, 1333–1342. [Google Scholar] [CrossRef]
- Pakhomov, N.A. The Scientific Basis for the Preparation of Catalysts: An Introduction to Theory and Practice (in Russian); Publishing Company SB RAS: Novosibirsk, Russia, 2011; pp. 172–196. [Google Scholar]
- Pakhomov, N.A.; Buyanov, R.A. Current Trends in the Improvement and Development of Catalyst Preparation Methods. Kinet. Catal. 2005, 46, 669–683. [Google Scholar] [CrossRef]
- Méthivier, C.; Béguin, B.; Brun, M.; Massardier, J.; Bertolini, J.C. Pd/SiC Catalysts: Characterization and Catalytic Activity for the Methane Total Oxidation. J. Catal. 1998, 173, 374–382. [Google Scholar] [CrossRef]
- Méthivier, C.; Massardier, J.; Bertolini, J.C. Pd/Si3N4 catalysts: Preparation, characterization and catalytic activity for the methane oxidation. Appl. Catal. A Gen. 1999, 182, 337–344. [Google Scholar] [CrossRef]
- Womes, M.; Lynch, J.; Bazin, D.; Le Peltier, F.; Morin, S.; Didillon, B. Interaction Between Pt(acac)2 and Alumina Surfaces Studied by XAS. Catal. Lett. 2003, 85, 25–31. [Google Scholar] [CrossRef]
- Lee, Y.; George, S.M. Atomic layer etching of Al2O3 using sequential, self-limiting thermal reactions with Sn(acac)2 and hydrogen fluoride. ACS Nano 2015, 9, 2061–2070. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; DuMont, J.W.; George, S.M. Mechanism of Thermal Al2O3 Atomic Layer Etching Using Sequential Reactions with Sn(acac)2 and HF. Chem. Mater. 2015, 27, 3648–3657. [Google Scholar] [CrossRef]
- Fujishima, M.; Jin, Q.; Yamamoto, H.; Tada, H.; Nolan, M. Tin oxide-surface modified anatase titanium(iv) dioxide with enhanced UV-light photocatalytic activity. Phys. Chem. Chem. Phys. 2012, 14, 705–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van-Veen, J.A.R.; De Jong-Versloot, P.C.; Van Kessel, G.M.M.; Fels, F.J. A thermoanalytic-mass spectrometric study of oxide-supported acetylacetonates. Thermochim. Acta 1989, 152, 359–370. [Google Scholar] [CrossRef]
- Mouat, A.R.; Whitford, C.L.; Chen, B.-R.; Liu, S.; Perras, F.A.; Pruski, M.; Bedzyk, M.J.; Delferro, M.; Stair, P.C.; Marks, T.J. Synthesis of Supported Pd0 Nanoparticles from a SingleSite Pd2+ Surface Complex by Alkene Reduction. Chem. Mater. 2018, 30, 1032–1044. [Google Scholar] [CrossRef]
- Feng, Y.S.; Zhou, S.M.; Li, Y.; Li, C.C.; Zhang, L.D. Synthesis and characterization of tin oxide nanoparticles dispersed in monolithic mesoporous silica. Solid State Sci. 2003, 5, 729–733. [Google Scholar] [CrossRef]
- Kurajica, S.; Lozic, I.; Pantaler, M. Thermal decomposition of calcium(II) bis(acetylacetonate) n-hydrate. Polimeri 2014, 35, 4–9. [Google Scholar]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation Physical Electronics Division: Eden Prairie, MN, USA, 1992. [Google Scholar]
- Brun, M.; Berthet, A.; Bertolini, J.C. XPS, AES and Auger parameter of Pd and PdO. J. Electron. Spectrosc. Relat. Phenom. 1999, 104, 55–60. [Google Scholar] [CrossRef]
- Briggs, D.; Seah, M.P. Pracrical Surface Analysis. Volume 1. Auger and X-ray Photoelectron Spectroscopy, 2nd ed.; Wiley: Chichester, UK, 1990. [Google Scholar]
- Kibis, L.S.; Titkov, A.I.; Stadnichenko, A.I.; Koscheev, S.V.; Boronin, A.I. X-ray photoelectron spectroscopy study of Pd oxidation by RF discharge in oxygen. Appl. Surf. Sci. 2009, 255, 9248–9254. [Google Scholar] [CrossRef]
- Kibis, L.S.; Stadnichenko, A.I.; Koscheev, S.V.; Zaikovskii, V.I.; Boronin, A.I. Highly Oxidized Palladium Nanoparticles Comprising Pd4+ Species: Spectroscopic and Structural Aspects, Thermal Stability, and Reactivity. J. Phys. Chem. C 2012, 116, 19342–19348. [Google Scholar] [CrossRef]
- Mazalov, L.N.; Trubina, S.V.; Kryuchkova, N.A.; Tarasenko, O.A.; Trubin, S.V.; Zharkova, G.I. X-Ray Photoelectron Study of Electron Density Distribution In Palladium(II) β-Diketonate Complexes. J. Struct. Chem. 2007, 48, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Zemlyanov, D.; Klotzer, B.; Gabasch, H.; Smeltz, A.; Ribeiro, F.H.; Zafeiratos, S.; Teschner, D.; Schnorch, P.; Vass, E.; Havecker, M.; et al. Kinetics of Palladium Oxidation in the mbar Pressure Range: Ambient Pressure XPS Study. Top Catal. 2013, 56, 885–895. [Google Scholar] [CrossRef] [Green Version]
- Titkov, A.I.; Salanov, A.N.; Koscheev, S.V.; Boronin, A.I. Mechanisms of Pd(110) surface reconstruction and oxidation: XPS, LEED and TDS study. Surf. Sci. 2006, 600, 4119–4125. [Google Scholar] [CrossRef]
- Lashina, E.A.; Slavinskaya, E.M.; Chumakova, N.A.; Stadnichenko, A.I.; Salanov, A.N.; Chumakov, G.A.; Boronin, A.I. Inverse temperature hysteresis and self-sustained oscillations in CO oxidation over Pd at elevated pressures of reaction mixture: Experiment and mathematical modeling. Chem. Eng. Sci. 2020, 212, 115312. [Google Scholar] [CrossRef]
- Wang, X.; Fan, W.; Zhang, C.; Chi, M.; Zhu, A.; Zhang, Q.; Liu, Q. Well-dispersed Pd–Sn nanocatalyst anchored on TiO2 nanosheets with enhanced activity and durability for ethanol electarooxidation. Electrochim. Acta 2019, 320, 134588. [Google Scholar] [CrossRef]
- Zhou, Y.; Niu, M.; Zhu, S.; Liang, Y.; Cui, Z.; Yang, X. Preparation and electrocatalytic performance of nanoporous Pd/Sn and Pd/Sn-CuO composite catalysts. Electrochim. Acta 2019, 296, 397–406. [Google Scholar] [CrossRef]
- Nolan, M.; Iwaszuk, A.; Tada, H. Molecular Metal Oxide Cluster-Surface Modified Titanium(IV) Dioxide Photocatalysts. Aust. J. Chem. 2012, 65, 624–632. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Tang, W.; Xu, Y.; Yu, H.; Yin, H.; Zhao, S.; Zhou, S. Pd-SnO2/Al2O3 heteroaggregate nanocatalysts for selective hydrogenations of p-nitroacetophenone and p-nitrobenzaldehyde. Appl. Catal. A Gen. 2018, 549, 273–279. [Google Scholar] [CrossRef]
- Chai, S.; Bai, X.; Li, J.; Liu, C.; Ding, T.; Tian, Y.; Liu, C.; Xian, H.; Mi, W.; Li, X. Effect of phase interaction on catalytic CO oxidation over the SnO2/Al2O3 model catalyst. Appl. Surf. Sci. 2017, 402, 12–20. [Google Scholar] [CrossRef]
- Khassin, A.A.; Yurieva, T.M.; Kaichev, V.V.; Bukhtiyarov, V.I.; Budneva, A.A.; Paukshtis, E.A.; Parmon, V.N. Metal–support interactions in cobalt-aluminum co-precipitated catalysts: XPS and CO adsorption studies. J. Mol. Catal. A Chem. 2001, 175, 189–204. [Google Scholar] [CrossRef]
- Tanashev, Y.Y.; Moroz, E.M.; Isupova, L.A.; Ivanova, A.S.; Litvak, G.S.; Amosov, Y.I.; Rudina, N.A.; Shmakov, A.N.; Stepanov, A.G.; Kharina, I.V.; et al. Synthesis of aluminum oxides from the products of the rapid thermal decomposition of hydrargillite in a centrifugal flash reactor: I. Physicochemical properties of the products obtained by the centrifugal thermal activation of hydrargillite. Kinet. Catal. 2007, 48, 153–161. [Google Scholar] [CrossRef]
- Kul’ko, E.V.; Ivanova, A.S.; Kruglyakov, V.Y.; Moroz, E.M.; Shefer, K.I.; Litvak, G.S.; Kryukova, G.N.; Tanashev, Y.Y.; Parmon, V.N. Synthesis of aluminum oxides from the products of the rapid thermal decomposition of hydrargillite in a centrifugal flash reactor: II. Structural and textural properties of aluminum hydroxide and oxide obtained from the product of the centrifugal thermal activation of hydrargillite (CTA product). Kinet. Catal. 2007, 48, 316–326. [Google Scholar]
- Kharina, I.V.; Isupova, L.A.; Litvak, G.S.; Moroz, E.M.; Kryukova, G.N.; Rudina, N.A.; Tanashev, Y.Y.; Parmon, V.N. Synthesis of aluminum oxides from the products of the rapid thermal decomposition of hydrargillite in a centrifugal flash reactor: III. Properties of aluminum hydroxides and oxides obtained via the mild rehydration of the products of the centrifugal thermal activation of hydrargillite. Kinet. Catal. 2007, 48, 327–335. [Google Scholar]
- Danilevich, V.V.; Isupova, L.A.; Kagyrmanova, A.P.; Kharina, I.V.; Zyuzin, D.A.; Noskov, A.S. Highly effective water adsorbents based on aluminum oxide. Kinet. Catal. 2012, 53, 632–639. [Google Scholar] [CrossRef]
- Zotov, R.A.; Glazyrin, A.A.; Danilevich, V.V.; Kharina, I.V.; Zyuzin, D.A.; Volodin, A.M.; Isupova, L.A. Influence of the temperature of calcination of bayerite-containing aluminum hydroxide pellets on the water vapor adsorption capacity and acid-base properties of alumina. Kinet. Catal. 2012, 53, 570–576. [Google Scholar] [CrossRef]
- Danilevich, V.V.; Isupova, L.A.; Danilova, I.G.; Zotov, R.A.; Ushakov, V.A. Characteristics optimization of activated alumina desiccants based on product of a centrifugal thermal activation of gibbsite. Russ. J. Appl. Chem. 2016, 89, 343–353. [Google Scholar] [CrossRef]
Name Sample | Precalculated Pd/Sn (at) | Measured Pd (wt%) | Pd (at%) | Measured Sn (wt%) | Sn (at%) | Pd/Sn (at) | Average Size, nm |
---|---|---|---|---|---|---|---|
Pd/γ-Al2O3 | ― | 1.32 | 1.27 | ― | ― | ― | 3.5 |
3Pd1Sn/γ-Al2O3 | 3:1 | 0.96 | 0.93 | 0.39 | 0.33 | 2.82 | 3.2 |
1Pd1Sn/γ-Al2O3 | 1:1 | 0.64 | 0.62 | 0.74 | 0.64 | 0.97 | 2.8 |
Name of Sample | Atomic Ratio Pd/Sn | Quantification, at% | Binding Energy, eV | ||||
---|---|---|---|---|---|---|---|
Pd | Sn | Pd3d5/2 (Pd) | Pd3d5/2 (PdO) | Sn3d5/2 (Sn) | Sn3d5/2 (SnOx) | ||
Pd/γ-Al2O3 | — | 0.08 | — | 335.2 | 336.4 | — | — |
3Pd1Sn/γ-Al2O3 | 3:1 | 0.15 | 0.11 | 335.2 | 336.3 | 485.1 | 487.0 |
1Pd1Sn/γ-Al2O3 | 1:1 | 0.10 | 0.25 | 334.7 | 336.2 | 485.3 | 487.2 |
Name Sample | Atomic Ratio Pd/Sn | m(Pd), mg. | m(Sn), mg. | c (Pd), mmol/L | c (Sn), mmol/L | ω(Pd), wt% | ω(Sn), wt% |
---|---|---|---|---|---|---|---|
Pd/γ-Al2O3 | ― | 60.0 | ― | 5.6 | ― | 1.20 | ― |
3Pd1Sn/γ-Al2O3 | 3:1 | 43.7 | 16.3 | 4.1 | 1.4 | 0.87 | 0.33 |
1Pd1Sn/γ-Al2O3 | 1:1 | 28.4 | 31.7 | 2.7 | 2.7 | 0.57 | 0.63 |
Name Sample | Specific Surface Area, m2/g | Total Pore Volume, cm3/g | Average Pore Size, nm |
---|---|---|---|
Pd/γ-Al2O3 | 335 | 0.44 | 6.0 |
3Pd1Sn/γ-Al2O3 | 282 | 0.41 | 5.8 |
1Pd1Sn/γ-Al2O3 | 284 | 0.42 | 5.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bondarchuk, I.; Cadete Santos Aires, F.J.; Mamontov, G.; Kurzina, I. Preparation and Investigation of Pd and Bimetallic Pd-Sn Nanocrystals on γ-Al2O3. Crystals 2021, 11, 444. https://doi.org/10.3390/cryst11040444
Bondarchuk I, Cadete Santos Aires FJ, Mamontov G, Kurzina I. Preparation and Investigation of Pd and Bimetallic Pd-Sn Nanocrystals on γ-Al2O3. Crystals. 2021; 11(4):444. https://doi.org/10.3390/cryst11040444
Chicago/Turabian StyleBondarchuk, Ivan, Francisco José Cadete Santos Aires, Grigoriy Mamontov, and Irina Kurzina. 2021. "Preparation and Investigation of Pd and Bimetallic Pd-Sn Nanocrystals on γ-Al2O3" Crystals 11, no. 4: 444. https://doi.org/10.3390/cryst11040444
APA StyleBondarchuk, I., Cadete Santos Aires, F. J., Mamontov, G., & Kurzina, I. (2021). Preparation and Investigation of Pd and Bimetallic Pd-Sn Nanocrystals on γ-Al2O3. Crystals, 11(4), 444. https://doi.org/10.3390/cryst11040444