Hydrothermal Synthesis, Characterization and Exploration of Photocatalytic Activities of Polyoxometalate: Ni-CoWO4 Nanoparticles
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis of Ni-CoWO4 (NCW-NPs)
2.2. Characterization
2.3. Photocatalytic Measurement
3. Results and Discussion
3.1. X-ray Diffraction
3.2. FT-IR Analysis
3.3. Raman Spectroscopy
3.4. Morphological Analysis
3.5. BET Surface Area
3.6. Photocatalytic Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Lopez, X.A.; Fuentes, A.F.; Zaragoza, M.M.; Guillén, J.A.D.; Gutiérrez, J.S.; Ortiz, A.L.; Martinez, V.C. Synthesis, characterization and photocatalytic evaluation of MWO4 (M = Ni, Co, Cu and Mn) tungstates. Int. J. Hydrog. Energy 2016, 41, 23312–23317. [Google Scholar] [CrossRef]
- Li, C.; Xu, Y.; Tu, W.; Chen, G.; Xuel, R. Metal-free photocatalysts for various applications in energy conversion and environmental purification. Green Chem. 2017, 19, 882. [Google Scholar] [CrossRef]
- Sadiq, M.M.J.; Shenoy, U.S.; Bhat, D.K. High performance dual catalytic activity of novel zinc tungstate-reduced graphene oxide nanocomposites. Adv. Sci. Eng. Med. 2017, 9, 115–121. [Google Scholar]
- Kumara, S.; Ojha, A.K. Ni, Co and Ni–Co co-doping induced modification in shape, optical band gap and enhanced photocatalytic activity of CeO2 nanostructures for photodegradation of methylene blue dye under visible light irradiation. RSC Adv. 2016, 6, 8651. [Google Scholar] [CrossRef]
- Qin, R.; Meng, F.; Khan, M.W.; Li, B.Y.H.; Fan, Z.; Gong, J. Fabrication and enhanced photocatalytic property of TiO2-ZnO composite photocatalysts. Mater. Lett. 2019, 240, 84–87. [Google Scholar] [CrossRef]
- Alharthi, F.A.; Al-Zaqri, N.; El-marghany, A.; Alghamdi, A.A.; Alorabi, A.Q.; Baghdadi, N.; Shehri, H.S.A.; Wahab, R.; Ahmad, N. Synthesis of nano cauliflower ZnO photocatalyst by potato waste and its photocatalytic efficiency against dye. J. Mater. Sci. Mater. Electron. 2020, 31, 11538. [Google Scholar] [CrossRef]
- Alharthi, F.A.; Alghamdi, A.A.; Al-Zaqri1, N.; Alanazi, H.S.; Alsyahi, A.A.; El Marghany, A.; Ahmad, N. Facile one-pot green synthesis of Ag–ZnO Nanocomposites using potato peel and their Ag concentration dependent photocatalytic properties. Sci. Rep. 2020, 10, 20229. [Google Scholar] [CrossRef] [PubMed]
- Alharthi, F.A.; Alghamdi, A.A.; Alanazi, H.S.; Alsyahi, A.A.; Ahmad, N. Photocatalytic Degradation of the Light Sensitive Organic Dyes: Methylene Blue and Rose Bengal by Using Urea Derived g-C3N4/ZnO Nanocomposites. Catalysts 2020, 10, 1457. [Google Scholar] [CrossRef]
- Alharthi, F.A.; Alghamdi, A.A.; Alothman, A.A.; Almarhoon, Z.M.; Alsulaiman, M.F.; Al-Zaqri, N. Green Synthesis of ZnO Nanostructures Using Salvadora Persica Leaf Extract: Applications for Photocatalytic Degradation of Methylene Blue Dye. Crystals 2020, 10, 441. [Google Scholar] [CrossRef]
- Esparza, P.; Hernández, T.; Borges, M.E.; Álvarez-Galván, M.C.; Ruiz-Morales, J.C.; Fierro, J.L.G. TiO2 modifications by hydrothermal treatment and doping to improve its photocatalytic behaviour under visible light. Catal. Today 2013, 210, 135–141. [Google Scholar] [CrossRef]
- Ma, D.; Xin, Y.; Gao, M.; Wu, J. Fabrication and photocatalytic properties of cationic and anionic S-doped TiO2 nanofibers by electrospinning. Appl. Catal. B Environ. 2014, 147, 49–57. [Google Scholar] [CrossRef]
- Choi, W.Y.; Termin, A.; Hoffmann, M.R. The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. J. Phys. Chem. 1994, 98, 13669–13679. [Google Scholar] [CrossRef]
- Meng, F.; Song, X.; Sun, Z. Photocatalytic activity of TiO2 thin films deposited by RF magnetron sputtering. Vacuum 2009, 83, 1147–1151. [Google Scholar] [CrossRef]
- Thuong, H.T.T.; Kim, C.T.T.; Quang, L.N.; Kosslick, H. Highly active brookite TiO2-assisted photocatalytic degradation of dyes under the simulated solar−UVA radiation. Prog. Nat. Sci. Mater. Int. 2019, 29, 641–647. [Google Scholar] [CrossRef]
- Chowdhury, A.P.; Shambharkar, B.H. Fabrication and characterization of BiOBr-SnWO4 heterojunction nanocomposites with boosted photodegradation capability. Chem. Eng. J. Adv. 2020, 4, 100040. [Google Scholar] [CrossRef]
- Yangjeh, A.H.; Gohari, M.S. Novel magnetic Fe3O4/ZnO/NiWO4 nanocomposites: Enhanced visible-light photocatalytic performance through p-n heterojunctions. Sep. Purif. Technol. 2017, 184, 334–346. [Google Scholar] [CrossRef]
- Sadiq, M.M.J.; Shenoy, U.S.; Bhat, D.K. Synthesis of BaWO4/NRGO–g-C3N4 nanocomposites with excellent multifunctional catalytic performance via microwave approach. Front. Mater. Sci. 2018, 12, 247–263. [Google Scholar] [CrossRef]
- Rajpurohit, A.S.; Punde, N.S.; Rawool, C.R.; Srivastava, A.K. Fabrication of high energy density symmetric supercapacitor based on cobalt-nickel bimetallic tungstate nanoparticles decorated phosphorus-sulphur co-doped graphene nanosheets with extended voltage. Chem. Eng. J. 2019, 371, 679–692. [Google Scholar] [CrossRef]
- Huang, H.; Liu, L.; Tian, N.; Zhang, Y. Structure, optical properties, and magnetism of Zn1−xNixWO4 (0 ≤ x ≤ 1) solid solution. J. Alloys Compd. 2015, 637, 471–475. [Google Scholar] [CrossRef]
- Zhang, M.C.; Fan, H.Q.; Zhao, N.; Peng, H.; Ren, X.H.; Wang, W.J.; Li, H.; Chen, G.Y.; Zhu, Y.N.; Jiang, X.B.; et al. 3D hierarchical CoWO4/Co3O4 nanocone arrays for asymmetric supercapacitors with high energy density. Chem. Eng. J. 2018, 347, 291–300. [Google Scholar] [CrossRef]
- Xu, X.; Yang, Y.; Wang, M.; Pei, D.; Robert, B.; Shen, J.F.; Ye, M.X. Straight forward synthesis of hierarchical Co3O4@CoWO4/rGO core-shell arrays on Ni as hybrid electrodes for asymmetric supercapacitors. Ceram. Int. 2016, 42, 10719–10725. [Google Scholar] [CrossRef]
- Sadiq, M.M.J.; Shenoy, U.S.; Bhat, D.K. NiWO4–ZnO–NRGO ternary nanocomposite as an efficient photocatalyst for degradation of methylene blue and reduction of 4-nitrophenol. J. Phys. Chem. Solids 2017, 109, 124–133. [Google Scholar] [CrossRef]
- Ai, Z.H.; Zhang, L.Z.; Lee, S.C.; Ho, W.K. Interfacial hydrothermal synthesis of Cu@Cu2O core-shell microspheres with enhanced visible-light-driven photo-catalytic activity. J. Phys. Chem. C 2009, 113, 20896–20902. [Google Scholar] [CrossRef]
- Zhang, M.; Fan, H.; Ren, X.; Zhao, N.; Peng, H.; Wang, C.; Wu, X.; Dong, G.; Long, C.; Wang, W.; et al. Study of pseudocapacitive contribution to superior energy storage of 3D heterostructure CoWO4/Co3O4 nanocone arrays. J. Power Sources 2019, 418, 202–210. [Google Scholar] [CrossRef]
- Xu, X.; Gao, J.; Huang, G.; Qiu, H.; Wanga, Z.; Wu, J.; Pan, Z.; Xing, F. Fabrication of CoWO4@NiWO4 nanocomposites with good supercapacitve performances. Electrochim. Acta 2015, 174, 837–845. [Google Scholar] [CrossRef]
- Fan, M.S.; Zuhairi, A.A.; Bhatia, S. Utilization of greenhouse gases through dry reforming: Screening of nickel-based bimetallic catalysts and kinetic studies. Chem. Sus. Chem. 2011, 4, 643–653. [Google Scholar] [CrossRef]
- Nathan, T.; Aziz, A.; Noor, A.F.; Prabaharan, S.R.S. Nanostructured NiO for electrochemical capacitors: Synthesis and electrochemical properties. J. Solid State Electrochem. 2008, 12, 1003–1009. [Google Scholar] [CrossRef]
- Hotovy, I.; Huran, J.; Spiess, L.; Hascik, S.; Rehacek, V. Preparation of nickel oxide thin films for gas sensors applications. Sens. Actuators B 1999, 57, 147. [Google Scholar] [CrossRef]
- Hosny, N.M. Synthesis, characterization and optical band gap of NiO nanoparticles derivedfrom anthranilic acid precursors via a thermal decomposition route. Polyhedron 2011, 30, 470–476. [Google Scholar] [CrossRef]
- Yang, H.; Tao, Q.; Zhang, X.; Tang, A.; Ouyang, J. Solid-state synthesis and electrochemical property of SnO2/NiO nanomaterials. J. Alloy. Compd. 2008, 459, 98. [Google Scholar] [CrossRef]
- He, G.; Li, J.; Li, W.; Li, B.; Noor, N.; Xu, K.; Hu, J.; Parkin, I.P. One pot synthesis of nickel foam supported self-assembly of NiWO4 and CoWO4 nanostructures that act as high performance electrochemical capacitor electrodes. J. Mater. Chem. A 2015, 3, 14272–14278. [Google Scholar] [CrossRef]
- Holzwarth, U.; Gibson, N. The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat. Nanotechnol. 2011, 6, 534. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Pei, L.; Yang, Y.; Shen, J.; Ye, M. Facile synthesis of NiWO4/reduced graphene oxide nanocomposite with excellent capacitive performance for supercapacitors. J. Alloy. Compd. 2016, 654, 23–31. [Google Scholar] [CrossRef]
- Appavu, B.; Kannan, K.; Thiripuranthagan, S. Enhanced visible light photocatalytic activities of template free mesoporous nitrogen doped reduced graphene oxide/titania composite catalysts. J. Ind. Eng. Chem. 2016, 36, 184–193. [Google Scholar] [CrossRef]
- Xu, X.; Shen, J.; Li, N.; Ye, M. Facile synthesis of reduced graphene oxide CoWO4 nanocomposites with enhanced electrochemical performances for supercapacitors. Electrochim. Acta 2014, 150, 23–34. [Google Scholar] [CrossRef]
- Niu, L.; Li, Z.; Xu, Y.; Sun, J. Simple synthesis of amorphous NiWO4 nanostructure and its application as a novel cathode material for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2013, 5, 8044–8052. [Google Scholar] [CrossRef] [PubMed]
- Fonzo, F.D.; Bailini, A.; Russo, V.; Baserga, A.; Cattaneo, D.; Beghi, M.G.; Ossi, P.M.; Casari, C.S.; Bassi, A.L.; Bottani, C.E. Synthesis and characterization of tungsten and tungsten oxide nanostructured films. Catal. Today 2006, 116, 69–73. [Google Scholar] [CrossRef]
- Ram, J.; Singh, R.G.; Gupta, R.; Kumar, V.; Singh, F.; Kumar, R. Effect of Annealing on the Surface Morphology, Optical and and Structural Properties of Nanodimensional Tungsten Oxide Prepared by Coprecipitation Technique. J. Electron. Mater. 2019, 48, 1174–1183. [Google Scholar] [CrossRef]
- Kolesov, B. Raman investigation of H2O molecule and hydroxyl groups in the channels of hemimorphite. Am. Mineral. 2006, 91, 1355–1362. [Google Scholar] [CrossRef]
- Gregg, S.J.; Sing, K.S.W. Adsorption, Surface Area, and Porosity, 2nd ed.; Academic Press: London, UK, 1983. [Google Scholar]
- Liang, L.; Liu, H.; Xie, X. Fabrication of novel CuWO4 hollow microsphere photocatalyst for dye degradation under visible-light irradiation. Mater. Lett. 2016, 182, 302–304. [Google Scholar] [CrossRef]
- Montini, T.; Gombac, V.; Hameed, A.; Felisari, L.; Adami, G.; Fornasiero, P. Synthesis, characterization and photocatalytic performance of transition metal tungstates. Chem. Phys. Lett. 2010, 498, 113–119. [Google Scholar] [CrossRef]
- Garadkar, K.M.; Ghule, L.A.; Sapnar, K.B.; Dhole, S.D. A facile synthesis of ZnWO4 nanoparticles by microwave assisted technique and its application in photocatalysis. Mater. Res. Bull. 2013, 48, 1105–1109. [Google Scholar] [CrossRef]
- Alharthi, F.A.; Shashank, M.; Shashikanth, J.; Viswantha, R.; Alghamdi, A.A.; Algethami, J.; Alsaiari, M.A.; Jalalah, M.S.; Ganganagappa, N. Hydrothermal synthesis of α-SnWO4: Application to lithium-ion battery and photocatalytic activity. Ceram. Int. 2021, in press. [Google Scholar] [CrossRef]
- Chaiwichian, S.; Wetchakun, K.; Kangwansupamonkon, W.; Wetchakun, N. Novel visible-light-driven BiFeO3-Bi2WO6 nanocomposites toward degradation of dyes. J. Photochem. Photobiol. A Chem. 2017, 349, 183–192. [Google Scholar] [CrossRef]
- Cao, X.; Chen, Y.; Jiao, S.; Fang, Z.; Xu, M.; Liu, X.; Li, L.; Pang, G.; Feng, S. Magnetic photocatalysts with a p–n junction: Fe3O4 nanoparticle and FeWO4 nanowire heterostructures. Nanoscale 2014, 6, 12366–12370. [Google Scholar] [CrossRef] [PubMed]
- Barreto, J.C.; Smith, G.S.; Strobel, N.H.P.; McQuillin, P.A.; Miller, T.A. Terephthalic acid: A dosimeter for the detection of hydroxyl radicals in vitro. Life Sci. 1995, 56, 89. [Google Scholar] [CrossRef]
Powder | a (Å) | b (Å) | c (Å) | Phase | D (nm) |
---|---|---|---|---|---|
As-calcined | 4.634 | 5.670 | 4.923 | Monoclinic | 22.538 |
As-synthesized | 4.641 | 5.689 | 4.959 | Monoclinic | 43.185 |
Dye | Degradation (%) | Rate Constant (min−1) | t1/2(min) | R2 |
---|---|---|---|---|
MB | 48.73 | 0.437 × 10−2 | 158.45 | 0.977 |
RB | 92.29 | 3.198 × 10−2 | 21.72 | 0.975 |
Photocatalyst | Dye | Light Source | Time (min) | Degradation (%) | Ref. |
---|---|---|---|---|---|
Ni-CoWO4 | RB | 300 W, Xe | 90 | 92.28 | TW |
MB | 300 W, Xe | 150 | 48.72 | TW | |
BaWO4 | MB | 250 W, Hg | 120 | 21.06 | 18 |
CuWO4 | MB | 500 W, Xe | 80 | 78 | 41 |
CoWO4 | MB | Med. Pressure Hg | 120 | 18.6 | 42 |
NiWO4 | MB | Med. Pressure Hg | 120 | 92.5 | 42 |
CuWO4 | MB | Med. Pressure Hg | 120 | 12.5 | 42 |
ZnWO4 | MB | Med. Pressure Hg | 120 | 2.72 | 42 |
ZnWO4 | MB | Low Pressure Hg | 60 | >50 | 43 |
a-SnWO4 | MB | 300 W, W | 240 | 99 | 44 |
Bi2WO6 | MB | 50 W, Halogen | 60 | 23 | 45 |
0.5BiFeO3-0.5Bi2WO6 | MB | 50 W, Halogen | 60 | 54 | 45 |
Fe3O4/FeWO4 | MB | 500 W, Xe | 60 | 97.1 | 46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharthi, F.A.; Alanazi, H.S.; Alsyahi, A.A.; Ahmad, N. Hydrothermal Synthesis, Characterization and Exploration of Photocatalytic Activities of Polyoxometalate: Ni-CoWO4 Nanoparticles. Crystals 2021, 11, 456. https://doi.org/10.3390/cryst11050456
Alharthi FA, Alanazi HS, Alsyahi AA, Ahmad N. Hydrothermal Synthesis, Characterization and Exploration of Photocatalytic Activities of Polyoxometalate: Ni-CoWO4 Nanoparticles. Crystals. 2021; 11(5):456. https://doi.org/10.3390/cryst11050456
Chicago/Turabian StyleAlharthi, Fahad A., Hamdah S. Alanazi, Amjad Abdullah Alsyahi, and Naushad Ahmad. 2021. "Hydrothermal Synthesis, Characterization and Exploration of Photocatalytic Activities of Polyoxometalate: Ni-CoWO4 Nanoparticles" Crystals 11, no. 5: 456. https://doi.org/10.3390/cryst11050456
APA StyleAlharthi, F. A., Alanazi, H. S., Alsyahi, A. A., & Ahmad, N. (2021). Hydrothermal Synthesis, Characterization and Exploration of Photocatalytic Activities of Polyoxometalate: Ni-CoWO4 Nanoparticles. Crystals, 11(5), 456. https://doi.org/10.3390/cryst11050456