Crystal Structure of Nitrilase-Like Protein Nit2 from Kluyveromyces lactis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cloning of Nit2 from Kluyveromyces lactis
2.2. Purification of the Recombinant KlNit2 Protein
2.3. Crystallization
2.4. Data Collection and Structure Determination
3. Results
3.1. Overall Structure of KlNit2
3.2. Active Site
3.3. Ligand-Binding Modes
3.4. Structural Comparison between KlNit2 and Its Homologs
3.5. Comparison of the Active Site
3.6. The Structural Features of the KlNit2-Homologous Proteins
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brenner, C. Catalysis in the nitrilase superfamily. Curr. Opin. Struct. Biol. 2002, 12, 775–782. [Google Scholar] [CrossRef]
- Pace, H.C.; Brenner, C. The nitrilase superfamily: Classification, structure and function. Genome Biol. 2001, 2, REVIEWS0001. [Google Scholar] [CrossRef] [PubMed]
- Barglow, K.T.; Saikatendu, K.S.; Bracey, M.H.; Huey, R.; Morris, G.M.; Olson, A.J.; Stevens, R.C.; Cravatt, B.F. Functional proteomic and structural insights into molecular recognition in the nitrilase family enzymes. Biochemistry 2008, 47, 13514–13523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huebner, K.; Saldivar, J.C.; Sun, J.; Shibata, H.; Druck, T. Hits, Fhits and Nits: Beyond enzymatic function. Adv. Enzym. Regul. 2011, 51, 208–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peracchi, A.; Veiga-Da-Cunha, M.; Kuhara, T.; Ellens, K.W.; Paczia, N.; Stroobant, V.; Seliga, A.K.; Marlaire, S.; Jaisson, S.; Bommer, G.T.; et al. Nit1 is a metabolite repair enzyme that hydrolyzes deaminated glutathione. Proc. Natl. Acad. Sci. USA 2017, 114, E3233–E3242. [Google Scholar] [CrossRef] [Green Version]
- Maras, B.; Barra, D.; Duprè, S.; Pitari, G. Is pantetheinase the actual identity of mouse and human vanin-1 proteins? FEBS Lett. 1999, 461, 149–152. [Google Scholar] [CrossRef] [Green Version]
- Jaisson, S.; Veiga-da-Cunha, M.; van Schaftingen, E. Molecular identification of omega-amidase, the enzyme that is functionally coupled with glutamine transaminases, as the putative tumor suppressor Nit2. Biochimie 2009, 91, 1066–1071. [Google Scholar] [CrossRef]
- Pace, H.; Hodawadekar, S.; Draganescu, A.; Huang, J.; Bieganowski, P.; Pekarsky, Y.; Croce, C.; Brenner, C. Crystal structure of the worm NitFhit Rosetta Stone protein reveals a Nit tetramer binding two Fhit dimers. Curr. Biol. 2000, 10, 907–917. [Google Scholar] [CrossRef] [Green Version]
- Mittag, S.; Valenta, T.; Weiske, J.; Bloch, L.; Klingel, S.; Gradl, D.; Wetzel, F.; Chen, Y.; Petersen, I.; Basler, K.; et al. A novel role for the tumour suppressor Nitrilase1 modulating the Wnt/beta-catenin signalling pathway. Cell Discov. 2016, 2, 15039. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.A.; Sun, Y.; le Blanc, J.M.; Solomides, C.; Zhan, T.; Lu, B. Nitrilase 1 modulates lung tumor progression in vitro and in vivo. Oncotarget 2016, 7, 21381–21392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.-H.; Chung, M.-Y.; Chen, W.-B.; Chien, C.-H. Growth inhibitory effect of the human NIT2 gene and its allelic imbalance in cancers. FEBS J. 2007, 274, 2946–2956. [Google Scholar] [CrossRef]
- Semba, S.; Han, S.-Y.; Qin, H.R.; McCorkell, K.A.; Iliopoulos, D.; Pekarsky, Y.; Druck, T.; Trapasso, F.; Croce, C.M.; Huebner, K. Biological functions of mammalian Nit1, the counterpart of the invertebrate NitFhit Rosetta stone protein, a possible tumor suppressor. J. Biol. Chem. 2006, 281, 28244–28253. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Hou, Y.-J.; Han, S.-Y.; Zhang, E.C.; Huebner, K.; Zhang, J. Mammalian nitrilase 1 homologue Nit1 is a negative regulator in T cells. Int. Immunol. 2009, 21, 691–703. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.; Zhang, J.; Lu, Y.; Li, X.; Zhang, W.; Zhang, W.; Lin, W.; Zheng, L.; Li, X. NIT1 suppresses tumour proliferation by activating the TGFbeta1-Smad2/3 signalling pathway in colorectal cancer. Cell Death Dis. 2018, 9, 263. [Google Scholar] [CrossRef] [Green Version]
- Jin, C.; Jin, H.; Quade, B.; Chang, J.H. Purification, crystallization, and X-ray crystallographic analysis of Nit2 from Kluyveromyces lactis. Biodesign 2020, 8, 20–23. [Google Scholar] [CrossRef]
- Adams, P.D.; Afonine, P.V.; Bunkóczi, G.; Chen, V.B.; Davis, I.W.; Echols, N.; Headd, J.J.; Hung, L.-W.; Kapral, G.J.; Grosse-Kunstleve, R.W.; et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 2010, 66 Pt 2, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Emsley, P.; Cowtan, K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 2126–2132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Gao, Y.; Zhang, M.; Qiu, X.; Cooper, A.J.L.; Niu, L.; Teng, M. Structures of enzyme-intermediate complexes of yeast Nit2: Insights into its catalytic mechanism and different substrate specificity compared with mammalian Nit2. Acta Crystallogr. D Biol. Crystallogr. 2013, 69 Pt 8, 1470–1481. [Google Scholar] [CrossRef]
- Sakai, N.; Tajika, Y.; Yao, M.; Watanabe, N.; Tanaka, I. Crystal structure of hypothetical protein PH0642 from Pyrococcus horikoshii at 1.6A resolution. Proteins 2004, 57, 869–873. [Google Scholar] [CrossRef]
- Wang, W.-C.; Hsu, W.-H.; Chien, F.-T.; Chen, C.-Y. Crystal structure and site-directed mutagenesis studies of N-carbamoyl-D-amino-acid amidohydrolase from Agrobacterium radiobacter reveals a homotetramer and insight into a catalytic cleft. J. Mol. Biol. 2001, 306, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Holm, L. DALI and the persistence of protein shape. Protein Sci. 2020, 29, 128–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forman, H.J.; Zhang, H.; Rinna, A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol. Asp. Med. 2009, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, M.C.; van der Donk, W.A. The many roles of glutamate in metabolism. J. Ind. Microbiol. Biotechnol. 2016, 43, 419–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niehaus, T.D.; Patterson, J.A.; Alexander, D.C.; Folz, J.S.; Pyc, M.; MacTavish, B.S.; Bruner, S.D.; Mullen, R.T.; Fiehn, O.; Hanson, A.D. The metabolite repair enzyme Nit1 is a dual-targeted amidase that disposes of damaged glutathione in Arabidopsis. Biochem. J. 2019, 476, 683–697. [Google Scholar] [CrossRef]
KlNit2 | |
---|---|
Data collection | |
Space group | C2 |
Cell dimensions | |
a, b, c (Å) | 79.0, 211.1, 89.4 |
α, β, γ (°) | 90, 112.1, 90 |
Resolution range (Å) | 50.0–2.2 (2.28–2.20) 1 |
Rmerge (%) 2 | 8.9 (52.1) |
I/σI | 17.0 (2.6) |
Total reflections | 392,121 |
Unique reflections | 68,506 (6799) |
Completeness (%) | 99.9 (99.9) |
Redundancy | 5.7 (5.6) |
CC1/2 | 99.1 (86.2) |
Structure refinement | |
Resolution range (Å) | 45.7–2.2 |
No. of reflections | 65,198 |
Rwork 3/Rfree (%) 4 | 16.8/22.3 |
No. atoms | |
Protein | 9700 |
Water | 543 |
RMSD | |
Bond length (Å) | 0.009 |
Bond angle (°) | 0.941 |
Planar group (Å) | 0.005 |
Chiral volume (Å3) | 0.057 |
Average B-factor (Å2) | 39.4 |
Protein | 39.2 |
Solvent | 43.3 |
Ramachandran plot (%) | |
Favored region | 97.2 |
Allowed | 2.4 |
Disallowed | 0.4 |
PDB code | 7ELF |
Proteins | Species | Z-Score | RMSD (Å) | Identity (%) | Cα | PDB Code |
---|---|---|---|---|---|---|
Nit2 | S. cerevisiae | 46.1 | 1.3 | 63 | 292 | 4HG3 |
NitFhit | C. elegans | 39.1 | 1.5 | 38 | 412 | 1EMS |
Nit2 | Mus musculus | 33.9 | 2.2 | 32 | 274 | 2W1V |
Nit3 | S. cerevisiae | 32.3 | 2.1 | 30 | 271 | 1F89 |
Putative carbon–nitrogen family hydrolase | Staphylococcus aureus | 32.1 | 2.1 | 22 | 268 | 3P8K |
Hypothetical protein Ph0642 | Pyrococcus horikoshii | 32.0 | 2.1 | 23 | 262 | 1J31 |
Hyperthermophilic nitrilase | Pyrococcus abyssi | 31.5 | 2 | 22 | 261 | 3IVZ |
NitN Amidase | Nesterenkonia sp. AN1 | 31.5 | 2 | 21 | 155 | 5JQN |
Amidase | Nesterenkonia sp. 10004 | 31.4 | 1.9 | 21 | 255 | 5NYB |
Carbon–nitrogen hydrolase | Helicobacter pylori | 31.1 | 1.9 | 24 | 293 | 6MG6 |
N-carbamoyl-D-amino acid amidohydrolase | Agrobacterium sp. | 31 | 2.5 | 30 | 303 | 1ERZ |
Amidase | Bacillus sp. | 31 | 3 | 17 | 339 | 4KZF |
N-carbamoyl-D-amino-acid amidohydrolase | Rhizobium radiobacter | 30.9 | 2.5 | 21 | 302 | 2GGK |
Medicago truncatula N-carbamoylputrescine amidohydrolase (MtCPA) | Medicago truncatula | 30.9 | 2.9 | 22 | 292 | 5H8I |
Aliphatic amidase | Pseudomonas aeruginosa | 30.7 | 2.4 | 18 | 341 | 2UXY |
Bacillus cereus formamidase (BceAmiF) | Bacillus cereus | 30.7 | 2.5 | 17 | 277 | 5H3O |
Putative Nit protein | Xanthomonas campestris pv. | 29.9 | 2.5 | 20 | 265 | 2E11 |
Glutamine-dependent NAD+ synthetase | Mycobacterium tuberculosis | 29.9 | 2.2 | 19 | 650 | 3SZG |
Pyrimidine-degrading enzyme | Drosophila melanogaster | 29.4 | 2.4 | 21 | 379 | 2VHI |
Formamidase AmiF | Helicobacter pylori | 29.1 | 2.2 | 19 | 317 | 2E2L |
Glutamine-dependent NAD+ synthetase | Burkholderia thailandensis | 28.7 | 2.3 | 18 | 540 | 4F4H |
β-Ureidopropionase | Homo sapiens | 28.4 | 2.6 | 19 | 332 | 6FTQ |
Nit6803 | Synechocystis sp. | 28.3 | 2.5 | 20 | 287 | 3WUY |
Glutamine-dependent NAD+ synthetase | Acinetobacter baumannii | 28.2 | 2.4 | 19 | 526 | 5KHA |
Nit4 | Arabidopsis thaliana | 28.1 | 2.1 | 23 | 289 | 6I00 |
Nh3-dependent NAD+ synthetase | Streptomyces avermitilis | 27.6 | 2.3 | 19 | 568 | 3N05 |
Glutamine-dependent NAD+ synthetase | Cytophaga hutchinsonii | 27.4 | 2.1 | 20 | 580 | 3ILV |
Vanin-1 | Homo sapiens | 26.6 | 3.5 | 16 | 462 | 4CYF |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, C.; Jin, H.; Jeong, B.-C.; Cho, D.-H.; Chun, H.-S.; Kim, W.-K.; Chang, J.H. Crystal Structure of Nitrilase-Like Protein Nit2 from Kluyveromyces lactis. Crystals 2021, 11, 499. https://doi.org/10.3390/cryst11050499
Jin C, Jin H, Jeong B-C, Cho D-H, Chun H-S, Kim W-K, Chang JH. Crystal Structure of Nitrilase-Like Protein Nit2 from Kluyveromyces lactis. Crystals. 2021; 11(5):499. https://doi.org/10.3390/cryst11050499
Chicago/Turabian StyleJin, Chaewon, Hyeonseok Jin, Byung-Cheon Jeong, Dong-Hyung Cho, Hang-Suk Chun, Woo-Keun Kim, and Jeong Ho Chang. 2021. "Crystal Structure of Nitrilase-Like Protein Nit2 from Kluyveromyces lactis" Crystals 11, no. 5: 499. https://doi.org/10.3390/cryst11050499
APA StyleJin, C., Jin, H., Jeong, B. -C., Cho, D. -H., Chun, H. -S., Kim, W. -K., & Chang, J. H. (2021). Crystal Structure of Nitrilase-Like Protein Nit2 from Kluyveromyces lactis. Crystals, 11(5), 499. https://doi.org/10.3390/cryst11050499