Crystal Structure of an Active Site Mutant Form of IRG1 from Bacillus subtilis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site-Directed Mutagenesis
2.2. Protein Expression and Purification
2.3. Crystallization and Data Collection
2.4. Structure Determination and Analysis
2.5. Decarboxylation Activity Test and HPLC Analysis
2.6. Structural Data Accession Number
3. Results
3.1. Preliminary X-ray Crystallographic Studies of bsIRG1_H102A
3.2. Overall Structure of H102A Mutant Form of bsIRG1
3.3. Comparison of the Structure of bsIRG1_H102A with the Structure of Wildtype bsIRG1
3.4. Activity Comparison of bsIRG1 with Mammalian IRG1
4. Discussion
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Neill, L.A.J.; Artyomov, M.N. Itaconate: The poster child of metabolic reprogramming in macrophage function. Nat. Rev. Immunol. 2019, 19, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Kurian, J.V. A new polymer platform for the future—Sorona (R) from corn derived 1,3-propanediol. J. Polym. Environ. 2005, 13, 159–167. [Google Scholar] [CrossRef]
- Cordes, T.; Michelucci, A.; Hiller, K. Itaconic Acid: The Surprising Role of an Industrial Compound as a Mammalian Antimicrobial Metabolite. Annu. Rev. Nutr. 2015, 35, 451–473. [Google Scholar] [CrossRef]
- Michelucci, A.; Cordes, T.; Ghelfi, J.; Pailot, A.; Reiling, N.; Goldmann, O.; Binz, T.; Wegner, A.; Tallam, A.; Rausell, A.; et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc. Natl. Acad. Sci. USA 2013, 110, 7820–7825. [Google Scholar] [CrossRef] [Green Version]
- Daniels, B.P.; Kofman, S.B.; Smith, J.R.; Norris, G.T.; Snyder, A.G.; Kolb, J.P.; Gao, X.; Locasale, J.W.; Martinez, J.; Gale, M.; et al. The Nucleotide Sensor ZBP1 and Kinase RIPK3 Induce the Enzyme IRG1 to Promote an Antiviral Metabolic State in Neurons. Immunity 2019, 50, 64–76.e4. [Google Scholar] [CrossRef] [Green Version]
- Nair, S.; Huynh, J.P.; Lampropoulou, V.; Loginicheva, E.; Esaulova, E.; Gounder, A.P.; Boon, A.C.M.; Schwarzkopf, E.A.; Bradstreet, T.R.; Edelson, B.T.; et al. Irg1 expression in myeloid cells prevents immunopathology during M-tuberculosis infection. J. Exp. Med. 2018, 215, 1035–1045. [Google Scholar] [CrossRef] [Green Version]
- Bentley, R.; Thiessen, C.P. Biosynthesis of itaconic acid in Aspergillus terreus. III. The properties and reaction mechanism of cis-aconitic acid decarboxylase. J. Biol. Chem. 1957, 226, 703–720. [Google Scholar] [CrossRef]
- Khan, F.R.; Mcfadden, B.A. Enzyme Profiles in Seedling Development and the Effect of Itaconate, an Isocitrate Lyase-Directed Reagent. Plant Physiol. 1979, 64, 228–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakai, A.; Kusumoto, A.; Kiso, Y.; Furuya, E. Itaconate reduces visceral fat by inhibiting fructose 2,6-bisphosphate synthesis in rat liver. Nutrition 2004, 20, 997–1002. [Google Scholar] [CrossRef]
- Li, A.; Pfelzer, N.; Zuijderwijk, R.; Punt, P. Enhanced itaconic acid production in Aspergillus niger using genetic modification and medium optimization. BMC. Biotechnol. 2012, 12, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dwiarti, L.; Yamane, K.; Yamatani, H.; Kahar, P.; Okabe, M. Purification and characterization of cis-aconitic acid decarboxylase from Aspergillus terreus TN484-M1. J. Biosci. Bioeng. 2002, 94, 29–33. [Google Scholar] [CrossRef]
- Kanamasa, S.; Dwiarti, L.; Okabe, M.; Park, E.Y. Cloning and functional characterization of the cis-aconitic acid decarboxylase (CAD) gene from Aspergillus terreus. Appl. Microbiol. Biot. 2008, 80, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Mills, E.L.; Ryan, D.G.; Prag, H.A.; Dikovskaya, D.; Menon, D.; Zaslona, Z.; Jedrychowski, M.P.; Costa, A.S.H.; Higgins, M.; Hams, E.; et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 2018, 556, 113–117. [Google Scholar] [CrossRef]
- Basler, T.; Jeckstadt, S.; Valentin-Weigand, P.; Goethe, R. Mycobacterium paratuberculosis, Mycobacterium smegmatis, and lipopolysaccharide induce different transcriptional and post-transcriptional regulation of the IRG1 gene in murine macrophages. J. Leukoc. Biol. 2006, 79, 628–638. [Google Scholar] [CrossRef]
- Strelko, C.L.; Lu, W.Y.; Dufort, F.J.; Seyfried, T.N.; Chiles, T.C.; Rabinowitz, J.D.; Roberts, M.F. Itaconic Acid Is a Mammalian Metabolite Induced during Macrophage Activation. J. Am. Chem. Soc. 2011, 133, 16386–16389. [Google Scholar] [CrossRef] [Green Version]
- Pessler, F.; Mayer, C.T.; Jung, S.M.; Behrens, E.M.; Dai, L.; Menetski, J.P.; Schumacher, H.R. Identification of novel monosodium urate crystal regulated mRNAs by transcript profiling of dissected murine air pouch membranes. Arthritis Res. Ther. 2008, 10, R64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michopoulos, F.; Karagianni, N.; Whalley, N.M.; Firth, M.A.; Nikolaou, C.; Wilson, I.D.; Critchlow, S.E.; Kollias, G.; Theodoridis, G.A. Targeted Metabolic Profiling of the Tg197 Mouse Model Reveals Itaconic Acid as a Marker of Rheumatoid Arthritis. J. Proteome Res. 2016, 15, 4579–4590. [Google Scholar] [CrossRef] [PubMed]
- Weiss, J.M.; Davies, L.C.; Karwan, M.; Ileva, L.; Ozaki, M.K.; Cheng, R.Y.; Ridnour, L.A.; Annunziata, C.M.; Wink, D.A.; McVicar, D.W. Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors. J. Clin. Investig. 2018, 128, 3794–3805. [Google Scholar] [CrossRef]
- Chen, F.F.; Lukat, P.; Iqbal, A.A.; Saile, K.; Kaever, V.; van den Heuvel, J.; Blankenfeldt, W.; Bussow, K.; Pessler, F. Crystal structure of cis-aconitate decarboxylase reveals the impact of naturally occurring human mutations on itaconate synthesis. Proc. Natl. Acad. Sci. USA 2019, 116, 20644–20654. [Google Scholar] [CrossRef] [Green Version]
- Chun, H.L.; Lee, S.Y.; Lee, S.H.; Lee, C.S.; Park, H.H. Enzymatic reaction mechanism of cis-aconitate decarboxylase based on the crystal structure of IRG1 from Bacillus subtilis. Sci. Rep. 2020, 10, 11305. [Google Scholar] [CrossRef] [PubMed]
- Chun, H.L.; Lee, S.Y.; Kim, K.H.; Lee, C.S.; Oh, T.J.; Park, H.H. The crystal structure of mouse IRG1 suggests that cis-aconitate decarboxylase has an open and closed conformation. PLoS ONE 2020, 15, e0242383. [Google Scholar] [CrossRef]
- Otwinowski, Z.; Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997, 276, 307–326. [Google Scholar] [PubMed]
- McCoy, A.J. Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr. D Biol. Crystallogr. 2007, 63, 32–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, P.D.; Afonine, P.V.; Bunkoczi, G.; Chen, V.B.; Davis, I.W.; Echols, N.; Headd, J.J.; Hung, L.W.; Kapral, G.J.; Grosse-Kunstleve, R.W.; et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Emsley, P.; Cowtan, K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 2126–2132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, V.B.; Arendall, W.B., III; Headd, J.J.; Keedy, D.A.; Immormino, R.M.; Kapral, G.J.; Murray, L.W.; Richardson, J.S.; Richardson, D.C. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 12–21. [Google Scholar] [CrossRef] [Green Version]
- DeLano, W.L.; Lam, J.W. PyMOL: A communications tool for computational models. Abstr. Pap. Am. Chem. Soc. 2005, 230, U1371–U1372. [Google Scholar]
- Vuoristo, K.S.; Mars, A.E.; van Loon, S.; Orsi, E.; Eggink, G.; Sanders, J.P.; Weusthuis, R.A. Heterologous expression of Mus musculus immunoresponsive gene 1 (irg1) in Escherichia coli results in itaconate production. Front Microbiol. 2015, 6, 849. [Google Scholar] [CrossRef] [PubMed]
- Ashkenazy, H.; Erez, E.; Martz, E.; Pupko, T.; Ben-Tal, N. ConSurf 2010: Calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res. 2010, 38, W529–W533. [Google Scholar] [CrossRef] [Green Version]
- Lohkamp, B.; Bauerle, B.; Rieger, P.G.; Schneider, G. Three-dimensional structure of iminodisuccinate epimerase defines the fold of the MmgE/PrpD protein family. J. Mol. Biol. 2006, 362, 555–566. [Google Scholar] [CrossRef] [PubMed]
Data Collection | bsIRG1_H102A |
X-ray source | Synchrotron (PAL 5C) |
Detector | Eiger 9M |
Wavelength | 0.97950 |
Space group | P212121 |
Cell dimensions | |
a, b, c | 58.91 Å, 110.77 Å, 168.56 Å |
α, β, γ | 90°, 90°, 90° |
† Resolution | 50.00–1.89 (1.93–1.89) Å |
Wilson B-factor | 21.38 Å2 |
† No. of unique reflections overall | 85,234 (5,322) |
† Rsym | 0.064 (0.754) |
† I/σI | 18.7 (2.1) |
† Completeness | 95.6% (91.3%) |
† Redundancy | 9.8 (8.9) |
CC1/2 | 0.99 (0.79) |
Refinement | |
† Resolution | 40.35–1.89 (1.91–1.89) Å |
No. of reflections used (completeness) | 85,146 (95.5%) |
No. of non-H protein atoms | 6,688 |
No. of water molecules | 763 |
No. of ions | 0 |
† Rwork | 17.21% (24.24%) |
† Rfree | 20.21% (26.57%) |
Average B-factors | |
Protein | 22.9 Å2 |
Water molecules | 34.4 Å2 |
r.m.s. deviations | |
Bond lengths | 0.006 Å |
Bond angles | 0.774° |
Ramachandran Plot | |
Ramachandran outliers | 0.00% |
Ramachandran favored | 99.32% |
Ramachandran allowed | 0.68% |
Rotamer outliers | 0.00% |
Clash score | 2.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.H. Crystal Structure of an Active Site Mutant Form of IRG1 from Bacillus subtilis. Crystals 2021, 11, 350. https://doi.org/10.3390/cryst11040350
Park HH. Crystal Structure of an Active Site Mutant Form of IRG1 from Bacillus subtilis. Crystals. 2021; 11(4):350. https://doi.org/10.3390/cryst11040350
Chicago/Turabian StylePark, Hyun Ho. 2021. "Crystal Structure of an Active Site Mutant Form of IRG1 from Bacillus subtilis" Crystals 11, no. 4: 350. https://doi.org/10.3390/cryst11040350
APA StylePark, H. H. (2021). Crystal Structure of an Active Site Mutant Form of IRG1 from Bacillus subtilis. Crystals, 11(4), 350. https://doi.org/10.3390/cryst11040350