A Review on Metamaterials for Device Applications
Abstract
:1. Introduction
Metamaterials
2. Applications of Metamaterials
3. Metamaterials in Photonic Devices
4. Metamaterials in Microwave Sensors
5. Metamaterials in Antennas
6. Metamaterials in Energy Harvesting
7. Metamaterials in SQUIDs
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pendry, J.B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 2000, 85, 3966. [Google Scholar] [CrossRef] [PubMed]
- Papasimakis, N.; Fedotov, V.A.; Zheludev, N.I.; Prosvirnin, S.L. Metamaterial analog of electromagnetically induced transparency. Phys. Rev. Lett. 2008, 101, 253903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurter, C.; Tassin, P.; Zhang, L.; Koschny, T.; Zhuravel, A.P.; Ustinov, A.V.; Anlage, S.M.; Soukoulis, C.M. Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial. Phys. Rev. Lett. 2011, 107, 043901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, B.B.; Wu, J.B.; Zhang, C.H.; Jia, X.Q.; Jia, T.; Kang, L.; Chen, J.; Wu, P.H. Enhanced slow light in superconducting electromagnetically induced transparency metamaterials. Supercond Sci. Technol. 2013, 26, 074004. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, J.; Jin, B.; Jia, X.; Kang, L.; Xu, W.; Wang, H.; Chen, J.; Tonouchi, M.; Wu, P. Tunable electromagnetically induced transparency from a superconducting terahertz metamaterial. Appl. Phys. Lett. 2017, 110, 241105. [Google Scholar] [CrossRef]
- Schurig, D.; Mock, J.J.; Justice, B.J.; Cummer, S.A.; Pendry, J.B.; Starr, A.F.; Smith, D.R. Metamaterial electromagnetic cloak at microwave frequencies. Science 2006, 314, 977–980. [Google Scholar] [CrossRef] [Green Version]
- Linden, S.; Enkrich, C.; Dolling, G.; Klein, M.W.; Zhou, J.; Koschny, T.; Soukoulis, C.M.; Burger, S.; Schmidt, F.; Wegener, M. Photonic Metamaterials: Magnetism at Optical Frequencies. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 1097–1105. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Wu, J.; Jiang, S.; Su, R.; Zhang, C.; Jiang, C.; Zhou, G.; Jin, B.; Kang, L.; Xu, W.; et al. Electrical dynamic modulation of THz radiation based on superconducting metamaterials. Appl. Phys. Lett. 2017, 111, 092601. [Google Scholar] [CrossRef]
- Shelby, R.A.; Smith, D.R.; Schultz, S. Experimental verification of a negative index of refraction. Science 2001, 292, 77–79. [Google Scholar] [CrossRef] [Green Version]
- Zheludev, N.I. The road ahead for metamaterials. Science 2010, 328, 582–583. [Google Scholar] [CrossRef]
- Zheludev, N.I. A Roadmap for Metamaterials. Opt. Photonics News 2011, 22, 31–35. [Google Scholar] [CrossRef]
- Tong, X.C. Science; Springer International Publishing AG: New York, NY, USA, 2018; Volume 262. [Google Scholar]
- Engheta, N.; Ziolkowski, R. Metamaterials: Physics and Engineering Explorations; John Wiley & Sons: New York, NY, USA, 2006; ISBN 9780471784180. [Google Scholar]
- Capolino, F. Theory and Phenomena of Metamaterials: Metamaterials Handbook; CRC Press: Boca Raton, FL, USA, 2017; ISBN1 1420054260. ISBN2 9781420054262. [Google Scholar]
- Smith, D.R.; Padilla, W.J.; Vier, D.C.; Nemat-Nasser, S.C.; Schultz, S. Composite Medium with Simultaneously Negative Permeability and Permittivity. Phys. Rev. Lett. 2000, 84, 4184–4187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veselago, V.G. The Electrodynamics of Substances with Simultaneously Negative Values of ε and µ. Usp. Fiz. Nauk. 1967, 92, 517–526. [Google Scholar] [CrossRef]
- Pendry, J.B.; Holden, A.J.; Robbins, D.J.; Stewart, W.J. Magnetism from Conductors, and Enhanced Non-linear Phenomena. IEEE Trans. Microw. Theory Tech. 1999, 47, 2075–2084. [Google Scholar] [CrossRef] [Green Version]
- Lalas, A.X.; Kantartzis, N.V.; Tsiboukis, T.D. Metamaterial-based wireless power transfer through interdigitated SRRs. COMPEL:Int. J. Comput. Math. Electr. Electron. Eng. 2016, 35, 1338–1345. [Google Scholar] [CrossRef]
- Pendry, J.B.; Holden, A.J.; Stewart, W.J.; Youngs, I. Extremely Low Frequency Plasmons in Metallic Mesostructures. Phys. Rev. Lett. 1996, 76, 4773–4776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manufacturing Disruption. Available online: https://manufacturingdisruption.com/2014/12/31/metamaterials-ultimate-composites/ (accessed on 4 May 2021).
- Ziolkowski, R.W. Design, Fabrication, and Testing of Double Negative Metamaterials. IEEE Trans. Antennas Propag. 2003, 51, 1516–1529. [Google Scholar] [CrossRef]
- Shamonina, E.; Solymar, L. Magneto-inductive waves supported by metamaterial elements: Components for a one-dimensional waveguide. J. Phys. D Appl. Phys. 2004, 37, 362–367. [Google Scholar] [CrossRef]
- Butz, S.; Jung, P.; Filippenko, L.V.; Koshelets, V.P.; Ustinov, A.V. A one-dimensional tunable magnetic metamaterial. Opt. Express 2013, 21, 22540–22548. [Google Scholar] [CrossRef] [Green Version]
- Zagoskin, A.M. Superconducting quantum metamaterials in 3D: Possible realizations. J. Opt. 2012, 14, 114011. [Google Scholar] [CrossRef]
- Mawatari, Y.; Navau, C.; Sanchez, A. Two-dimensional arrays of superconducting strips as dc magnetic metamaterials. Phys. Rev. B 2012, 85, 134524. [Google Scholar] [CrossRef] [Green Version]
- Kafesaki, M.; Tsiapa, I.; Katsarakis, N.; Koschny, T.; Soukoulis, C.M.; Economou, E.N. Left-handed meta-materials: The fishnet structure and its variations. Phys. Rev. B 2007, 75, 235114. [Google Scholar] [CrossRef] [Green Version]
- Wuestner, S.; Pusch, A.; Tsakmakidis, K.L.; Hamm, J.M.; Hess, O. Overcoming losses with gain in a negative refractive index metamaterial. Phys. Rev. Lett. 2010, 127401. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Guo, H.; Fu, L.; Kaiser, S.; Schweizer, H.; Giessen, H. Three-dimensional photonic metamaterials at optical frequencies. Nat. Mater. 2008, 7, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Valentine, J.; Zhang, S.; Zentgraf, T.; Ulin-Avila, E.; Genov, D.A.; Bartal, G.; Zhang, X. Three-dimensional optical metamaterial with a negative refractive index. Nature 2008, 455, 376–379. [Google Scholar] [CrossRef]
- Altintas, O.; Aksoy, M.; Akgol, O.; Unal, E.; Karaaslan, M.; Sabah, C. Fluid, Strain and Rotation Sensing Applications by Using Metamaterial Based Sensor. J. Electrochem. Soc. 2017, 164, B567–B573. [Google Scholar] [CrossRef]
- Abdulkarim, Y.I.; Deng, L.; Altintas, O.; Unal, E.; Karaaslan Physica, M. Low-Dimens, E. Metamaterial absorber sensor design by incorporating swastika shaped resonator to determination of the liquid chemicals depending on electrical characteristics. Syst. Nanostruct. 2019, 114, 113593. [Google Scholar]
- Bakir, M.; Dalgaç, Ş.; Karaaslan, M.; Karada, F.; Akgol, O.; Unal, E.; Depçi, T.; Sabah, C. A comprehensive study on fuel adulteration sensing by using triple ring resonator type metamaterial. J. Electrochem. Soc. 2019, 166, B1044–B1052. [Google Scholar] [CrossRef]
- Fang, N.; Zhang, X. Rapid growth of evanescent wave by a silver superlens. Appl. Phys. Lett. 2003, 82, 161–163. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Eleftheriades, G.V. Dual-band metamaterial-inspired small monopole antenna for WiFi applications. Electron. Lett. 2009, 45, 1104–1106. [Google Scholar] [CrossRef] [Green Version]
- Erentok, A.; Ziolkowski, R.W. Metamaterial-Inspired Efficient Electrically Small Antenna. IEEE Trans. Antennas Propag. 2008, 56, 691–707. [Google Scholar] [CrossRef] [Green Version]
- Aydin, K.; Bulu, I.; Ozbay, E. Subwavelength resolution with a negative-index metamaterial superlens. Appl. Phys. Lett. 2007, 90, 254102. [Google Scholar] [CrossRef] [Green Version]
- Hu, T.; Landy, N.I.; Bingham, C.M.; Zhang, X.; Averitt, R.D.; Padilla, W.J. A metamaterial absorber for the terahertz regime: Design, fabrication and characterization. Opt. Express 2008, 16, 7181–7188. [Google Scholar]
- Dincer, F.; Karaaslan, M.; Sabah, C. Design and analysis of perfect metamaterial absorber in GHz and THz Frequencies. J. Electromagn. Waves Appl. 2015, 29, 2492–2500. [Google Scholar] [CrossRef]
- Li, M.; Yang, H.L.; Hou, X.W.; Tian, Y.; Hou, D.Y. Perfect Metamaterial Absorber with Dual Bands. Prog. Electromagn. Res. 2010, 108, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Chen, Q.; Grant, J.; Saha, S.C.; Khalid, A.; Cumming, D.R. A terahertz polarization insensitive dual band metamaterial absorber. Opt. Lett. 2011, 36, 945–947. [Google Scholar] [CrossRef] [Green Version]
- Watts, C.M.; Liu, X.; Padilla, W.J. Metamaterial electromagnetic wave absorbers. Adv. Mater. 2012, 24, OP98–OP120. [Google Scholar] [CrossRef]
- Akgol, O.; Altintas, O.; Dalkilinc, E.E.; Unal, E.; Karaaslan, M.; Sabah, C. Metamaterial absorber-based multisensor applications using a meander-line resonator. Opt. Eng. 2017, 56, 087104. [Google Scholar] [CrossRef]
- Bagmanci, M.; Karaaslan, M.; Unal, E.; Özaktürk, M.; Akgol, O.; Karadag, F.; Bhadauria, A.; Bakir, M. Wide band fractal-based perfect energy absorber and power harvester. Int. J. RF Microw. Comput. Aided Eng. 2019, 29, e21597. [Google Scholar] [CrossRef]
- Mulla, B.; Sabah, C. Multiband metamaterial absorber design based on plasmonic resonances for solar energy harvesting. Plasmonics 2016, 11, 1313–1321. [Google Scholar] [CrossRef]
- Zheludev, N.I.; Kivshar, Y.S. From metamaterials to metadevices. Nat. Mater. 2012, 11, 917–924. [Google Scholar] [CrossRef]
- Wang, Z.; Cheng, F.; Winsor, T.; Liu, Y. Optical chiral metamaterials: A review of the fundamentals, fabrication methods and applications. Nanotechnology 2016, 27, 412001. [Google Scholar] [CrossRef] [Green Version]
- Qiu, M.; Zhang, L.; Tang, Z.; Jin, W.; Qiu, C.-W.; Lei, D.Y. 3D metaphotonic nanostructures with intrinsic chirality. Adv. Funct. Mater. 2018, 28, 1803147. [Google Scholar] [CrossRef]
- Gansel, J.K.; Thiel, M.; Rill, M.S.; Decker, M.; Bade, K.; Saile, V.; von Freymann, G.; Linden, S.; Wegener, M. Gold helix photonic metamaterial as broadband circular polarizer. Gold Helix Sci. 2009, 325, 1513–1515. [Google Scholar] [CrossRef]
- Gao, W.; Leung, H.M.; Li, Y.; Chen, H.; Tam, W.Y.J. Circular dichroism in double-layer metallic crossed-gratings. Optics 2011, 13, 115101. [Google Scholar]
- Yin, X.; Schäferling, M.; Michel, A.-K.U.; Tittl, A.; Wuttig, M.; Taubner, T.; Giessen, H. Active Chiral Plasmonics. Nano Lett. 2015, 15, 4255–4260. [Google Scholar] [CrossRef]
- Wu, C.; Arju, N.; Kelp, G.; Fan, J.A.; Dominguez, J.; Gonzales, E.; Tutuc, E.; Brener, I.; Shvets, G. Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances. Nat. Commun. 2014, 5, 3892. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Jia, H.; Yao, K.; Cai, W.; Chen, H.; Liu, Y. Circular dichroism metamirrors with near-perfect extinction. ACS Photonics 2016, 3, 2096–2101. [Google Scholar] [CrossRef]
- Li, W.; Coppens, Z.J.; Besteiro, L.V.; Wang, W.; Govorov, A.O.; Valentine, J. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat. Commun. 2015, 6, 8379. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Rodrigues, S.P.; Taghinejad, M.; Lan, S.; Lee, K.-T.; Liu, Y.; Werner, D.H.; Urbas, A.; Cai, W. Preserving spin states upon reflection: Linear and nonlinear responses of a chiral meta-mirror. Nano Lett. 2017, 17, 7102–7109. [Google Scholar] [CrossRef] [PubMed]
- Taghvaee, H.; Abadal, S.; Pitilakis, A.; Tsilipakos, O.; Tasolamprou, A.; Liaskos, C.K.; Kafesaki, M.; Kantartzis, N.V.; Cabellos-Aparicio, A.; Alarcón, E. Scalability Analysis of Programmable Metasurfaces for Beam Steering. IEEE Access 2020, 8, 105320–105334. [Google Scholar] [CrossRef]
- Kang, L.; Wang, C.-Y.; Guo, X.; Ni, X.; Liu, Z.; Werner, D.H. Nonlinear chiral meta-mirrors: Enabling technology for ultrafast switching of light polarization. Nano Lett. 2020, 20, 2047–2055. [Google Scholar] [CrossRef] [PubMed]
- Olsson, R.H.; El-Kady, I. Microfabricated phononic crystal devices and applications. Meas. Sci. Technol. 2009, 20, 012002. [Google Scholar] [CrossRef]
- Baboly, M.G.; Soliman, Y.M.F.; Reinke, M.; Leseman, Z.C.; El-Kady, I. Demonstration of acoustic waveguiding and tight bending in phononic crystals. Appl. Phys. Lett. 2016, 109, 183504. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.Z.; Kane, C.L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067. [Google Scholar] [CrossRef] [Green Version]
- Nash, L.M.; Kleckner, D.; Read, A.; Vitelli, V.; Turner, A.M.; Irvine, W.T.M. Topological mechanics of gyroscopic metamaterials. Proc. Natl. Acad. Sci. USA 2015, 112, 14495–14500. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, N.P.; Nash, L.M.; Hexner, D.; Turner, A.M.; Irvine, W.T.M. Amorphous topological insulators constructed from random point sets. Nat. Phys. 2018, 14, 380–385. [Google Scholar] [CrossRef]
- Süsstrunk, R.; Huber, S.D. Observation of phononic helical edge states in a mechanical topological insulator. Science 2015, 349, 47–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serra-Garcia, M.; Peri, V.; Süsstrunk, R.; Bilal, O.R.; Larsen, T.; Villanueva, L.G.; Huber, S.D. Observation of a phononic quadrupole topological insulator. Nature 2018, 555, 342–345. [Google Scholar] [CrossRef]
- Yu, S.; He, C.; Wang, Z.; Liu, F.-K.; Sun, X.-C.; Li, Z.; Lu, H.-Z.; Lu, M.-H.; Liu, X.-P.; Chen, Y.-F. Elastic pseudospin transport for integratable topological phononic circuits. Nat. Commun. 2018, 9, 3072. [Google Scholar] [CrossRef]
- Peano, V.; Brendel, C.; Schmidt, M.; Marquardt, F. Topological phases of sound and light. Phys. Rev. 2015, X5, 031011. [Google Scholar] [CrossRef] [Green Version]
- Brendel, C.; Peano, V.; Painter, O.J.; Marquardt, F. Snowflake phononic topological insulator at the nanoscale. Phys. Rev. 2018, B97, 020102. [Google Scholar] [CrossRef] [Green Version]
- Cha, J.; Kim, K.W.; Daraio, C. Experimental realization of on-chip topological nanoelectromechanical metamaterials. Nature 2018, 564, 229–233. [Google Scholar] [CrossRef]
- Cho, C.; Wen, X.; Park, N.; Li, J. Digitally virtualized atoms for acoustic metamaterials. Nat. Commun. 2020, 11, 251. [Google Scholar] [CrossRef] [PubMed]
- Forster, T.Z. Experimentelle und theoretische Untersuchung des zwischenmolekularen Übergangs von Elektronenanregungsenergie. Naturforsch. A 1949, 4, 321. [Google Scholar] [CrossRef]
- Scholes, G.D. Long-range resonance energy transfer in molecular systems. Annu. Rev. Phys. Chem. 2003, 54, 57–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardin, B.E.; Hoke, E.T.; Armstrong, P.B.; Yum, J.-H.; Comte, P.; Torres, T.; Frechet, J.M.; Nazeeruddin, M.K.; Gratzel, M.; McGehee, M.D. Increased light harvesting in dye-sensitized solar cells with energy relay dyes. Nat. Photonics 2009, 3, 406–411. [Google Scholar] [CrossRef]
- Baldo, M.A.; O’brien, D.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M.; Forrest, S. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 1998, 395, 151–154. [Google Scholar] [CrossRef]
- van Grondelle, R.; Dekker, J.P.; Gillbro, T.; Sundstrom, V. Energy transfer and trapping in photosynthesis. Biochim. Biophys. Acta Bioenerg. 1994, 1187, 1–65. [Google Scholar] [CrossRef]
- Tumkur, T.U.; Kitur, J.K.; Bonner, C.E.; Poddubny, A.N.; Narimanov, E.E.; Noginov, M.A. Control of Förster energy transfer in the vicinity of metallic surfaces and hyperbolic metamaterials. Faraday Discuss. 2015, 178, 395–412. [Google Scholar] [CrossRef] [Green Version]
- Cortes, C.L.; Jacob, Z. Super-Coulombic atom–atom interactions in hyperbolic media. Nat. Commun. 2017, 8, 14144. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Wu, T.; Yang, B.; Zhang, X. Simultaneously giant enhancement of Förster resonance energy transfer rate and efficiency based on plasmonic excitations. Phys. Rev. B Condens. Matter Mater. Phys. 2016, 94, 125416. [Google Scholar] [CrossRef] [Green Version]
- Martín-Cano, D.; Martín-Moreno, L.; García-Vidal, F.J.; Moreno, E. Resonance energy transfer and superradiance mediated by plasmonic nanowaveguides. Nano Lett. 2010, 10, 3129–3134. [Google Scholar] [CrossRef] [PubMed]
- Bouchet, D.; Cao, D.; Carminati, R.; De Wilde, Y.; Krachmalnic off, V. Long-range plasmon-assisted energy transfer between fluorescent emitters. Phys. Rev. Lett. 2016, 116, 037401. [Google Scholar] [CrossRef] [Green Version]
- Biehs, S.-A.; Menon, V.M.; Agarwal, G.S. Long-range dipole-dipole interaction and anomalous Förster energy transfer across a hyperbolic metamaterial. Phys. Rev. B Condens. Matter Mater. Phys. 2016, 93, 245439. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, R.; Biehs, S.-A.; Khwaja, E.; Galfsky, T.; Agarwal, G.S.; Menon, V.M. Long-range resonant energy transfer using optical topological transitions in metamaterials. ACS Photonics 2018, 5, 2737–2741. [Google Scholar] [CrossRef]
- Kruk, S.S.; Wong, Z.J.; Pshenay-Severin, E.; O’Brien, K.; Neshev, D.N.; Kivshar, Y.S.; Zhang, X. Magnetic hyperbolic optical metamaterials. Nat. Commun. 2016, 7, 11329. [Google Scholar] [CrossRef]
- Mirmoosa, M.S.; Kosulnikov, S.Y.; Simovski, C.R. Magnetic hyperbolic metamaterial of high-index nanowires. Phys. Rev. B 2016, 94, 075138. [Google Scholar] [CrossRef] [Green Version]
- Papadaki, G.T.; Fleischma, D.; Davoyan, A.; Yeh, A.; Atwater, H.A. Optical magnetism in planar metamaterial heterostructures. Nat. Commun. 2018, 9, 296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.H.; Qin, P.F.; Zheng, B.; Shen, L.; Wang, H.P.; Wang, Z.J.; Li, E.P.; Singh, R.; Chen, H.S. Hyperbolic metamaterials: From dispersion manipulation to applications. Adv. Sci. 2018, 5, 1801495. [Google Scholar] [CrossRef]
- Iorsh, I.V.; Poddubny, A.N.; Ginzburg, P.; Belov, P.A.; Kivshar, Y.S. Compton-like polariton scattering in hyperbolic metamaterials. Phys. Rev. Lett. 2015, 114, 185501. [Google Scholar] [CrossRef]
- Shen, H.; Lu, D.; VanSaders, B.; Kan, J.J.; Xu, H.X.; Fullerton, E.E.; Liu, Z.W. Anomalously Weak Scattering in Metal-Semiconductor Multilayer Hyperbolic Metamaterials. Phys. Rev. 2015, X5, 021021. [Google Scholar] [CrossRef]
- Qian, C.; Lin, X.; Yang, Y.; Gao, F.; Shen, Y.C.; Lopez, J.; Kaminer, I.; Zhang, B.L.; Li, E.P.; Soljacic, M.; et al. Multifrequency superscattering from subwavelength hyperbolic structures. ACS Photonics 2018, 5, 1506. [Google Scholar] [CrossRef] [Green Version]
- Rituraj; Catrysse, P.B.; Fan, S.H. Scattering of electromagnetic waves by cylinder inside uniaxial hyperbolic medium. Opt. Express 2019, 27, 3991. [Google Scholar]
- Memarian, M.; Eleftheriades, G.V. Light concentration using hetero-junctions of anisotropic low permittivity metamaterials. Light Sci. Appl. 2013, 2, e114. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.W.; Jiang, H.T.; Zhu, K.J.; Sun, Y.; Li, Y.H.; Chen, H. Focusing and super-resolution with partial cloaking based on linear-crossing metamaterials. Phys. Rev. Appl. 2018, 10, 064048. [Google Scholar] [CrossRef]
- Yang, Y.T.; Jia, Z.Y.; Xu, T.; Luo, J.; Lai, Y.; Hang, Z.H. Beam splitting and unidirectional cloaking using anisotropic zero-index photonic crystals. Appl. Phys. Lett. 2019, 114, 161905. [Google Scholar] [CrossRef] [Green Version]
- Naik, G.V.; Liu, J.; Kildishev, A.V.; Shalaev, V.M.; Boltasseva, A. Demonstration of Al: ZnO as a plasmonic component for near-infrared metamaterials. Proc. Natl. Acad. Sci. USA 2012, 109, 8834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, T.; Agrawal, A.; Abashin, M.; Chau, K.J.; Lezec, H.J. All-angle negative refraction and active flat lensing of ultraviolet light. Nature 2013, 497, 470. [Google Scholar] [CrossRef]
- Argyropoulos, C.; Estakhri, N.M.; Monticone, F.; Alù, A. Negative refraction, gain and nonlinear effects in hyperbolic metamaterials. Opt. Express 2013, 21, 15037. [Google Scholar] [CrossRef]
- High, A.A.; Devlin, R.C.; Dibos, A.; Polking, M.; Wild, D.S.; Perczel, J.; de Leon, N.P.; Lukin, M.D.; Park, H. Visible-frequency hyperbolic metasurface. Nature 2015, 522, 192. [Google Scholar] [CrossRef] [PubMed]
- Sheng, C.; Liu, H.; Chen, H.Y.; Zhu, S.N. Definite photon deflections of topological defects in metasurfaces and symmetry-breaking phase transitions with material loss. Nat. Commun. 2018, 9, 4271. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.R.; Schurig, D. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys. Rev. Lett. 2003, 90, 077405. [Google Scholar] [CrossRef]
- Smith, D.R.; Schurig, D.R.; Mock, J.J.; Kolinko, P.; Rye, P. Partial focusing of radiation by a slab of indefinite media. Appl. Phys. Lett. 2004, 84, 2244. [Google Scholar] [CrossRef]
- Noginov, M.A.; Li, H.; Barnakov, Y.A.; Dryden, D.; Nataraj, G.; Zhu, G.; Bonner, C.E.; Mayy, M.; Jacob, Z. ZEE Narimanov, Controlling spontaneous emission with metamaterials. Opt. Lett. 2010, 35, 1863–1865. [Google Scholar] [CrossRef] [Green Version]
- Jacob, Z.; Kim, J.; Naik, G.; Boltasseva, A.; Narimanov, E.; Shalaev, V. Engineering photonic density of states using metamaterials. Appl. Phys. B Lasers Opt. 2010, 100, 215–218. [Google Scholar] [CrossRef] [Green Version]
- Smolyaninov, I.I. Giant Unruh effect in hyperbolic metamaterial waveguides. Opt. Lett. 2019, 44, 2224–2227. [Google Scholar] [CrossRef]
- Tumkur, T.; Zhu, G.; Black, P.; Barnakov, Y.A.; Bonner, C.E.; Noginov, M.A. Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial. Appl. Phys. Lett. 2011, 99, 151115. [Google Scholar] [CrossRef]
- Krishnamoorthy, H.N.; Jacob, Z.; Narimanov, E.; Kretzschmar, I.; Menon, V.M. Topological transitions in metamaterials. Science 2012, 336, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galfsky, T.; Krishnamoorthy, H.N.S.; Newman, W.; Narimanov, E.E.; Jacob, Z.; Menon, V.M. Active hyperbolic metamaterials: Enhanced spontaneous emission and light extraction. Optica 2015, 2, 62. [Google Scholar] [CrossRef]
- Feng, K.J.; Sivco, D.L.; Hoffman, A.J. Engineering optical emission in sub-diffraction hyperbolic metamaterial resonators. Opt. Express 2018, 26, 4382. [Google Scholar] [CrossRef]
- Fernandes, D.E.; Maslovski, S.I.; Silveirinha, M.G. Cherenkov emission in a nanowire material. Phys. Rev. B 2012, 85, 155107. [Google Scholar] [CrossRef]
- Liu, F.; Xiao, L.; Ye, Y.; Wang, M.X.; Cui, K.Y.; Feng, X.; Zhang, W.; Huang, Y.D. Integrated Cherenkov radiation emitter eliminating the electron velocity threshold. Nat. Photonics 2017, 11, 289. [Google Scholar] [CrossRef]
- Silveirinha, M. A low-energy Cherenkov glow. Nat. Photonics 2017, 11, 269. [Google Scholar] [CrossRef]
- Tao, V.; Wu, L.; Zheng, G.X.; Yu, S.H. Cherenkov polaritonic radiation in a natural hyperbolic material. Carbon 2019, 150, 136. [Google Scholar] [CrossRef]
- Belov, P.A.; Simovski, C.R.; Ikonen, P. Canalization of subwavelength images by electromagnetic crystals. Phys. Rev. B 2005, 71, 193105. [Google Scholar] [CrossRef]
- Poddubny, A.; Iorsh, I.; Belov, P.; Kivshar, Y. Hyperbolic metamaterials. Nat. Photon. 2013, 7, 948–957. [Google Scholar] [CrossRef]
- Folland, T.G.; Fali, A.; White, S.T.; Matson, J.R.; Liu, S.; Aghamiri, N.A.; Edgar, J.H.; Haglund, R.F., Jr.; Abate, Y.; Caldwell, J.D. Reconfigurable infrared hyperbolic metasurfaces using phase change materials. Nat. Commun. 2018, 9, 4371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoxall, E.; Schnell, M.; Nikitin, A.Y.; Txoperena, O.; Woessner, A.; Lundeberg, M.B.; Casanova, F.; Hueso, L.E.; Koppens, F.H.L.; Hillenbrand, R. Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nat. Photonics 2015, 9, 674. [Google Scholar] [CrossRef]
- Caldwell, J.D.; Aharonovich, I.; Cassabois, G.; Edgar, J.H.; Gil, B.; Basov, D.N. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 2019, 4, 552. [Google Scholar] [CrossRef]
- Ambrosio, A.; Jauregui, L.A.; Dai, S.; Chaudhary, K.; Tamagnone, M.; Fogler, M.M.; Basov, D.N.; Capasso, F.; Kim, P.; Wilson, W.L. Mechanical detection and imaging of hyperbolic phonon polaritons in hexagonal boron nitride. ACS Nano 2017, 11, 8741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfaro-Mozaz, F.J.; Alonso-González, P.; Vélez, S.; Dolado, I.; Autore, M.; Mastel, S.; Casanova, F.; Hueso, L.E.; Li, P.; Nikitin, A.Y.; et al. Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas. Nat. Commun. 2017, 8, 15624. [Google Scholar]
- Lin, X.; Yang, Y.; Rivera, N.; López, J.J.; Shen, Y.; Kaminerb, I.; Chen, H.; Zhang, B.; Joannopoulos, J.D.; Soljacic, M. All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene–boron nitride heterostructures. Proc. Natl. Acad. Sci. USA 2017, 114, 6717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, W.; Alonso-González, P.; Li, S.; Nikitin, A.Y.; Yuan, J.; Martín-Sánchez, J.; Taboada-Gutiérrez, J.; Amenabar, I.; Li, P.; Vélez, S.; et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 2018, 562, 557. [Google Scholar] [CrossRef] [Green Version]
- Kruk, S.S.; Powell, D.A.; Minovich, A.; Neshev, D.N.; Kivshar, Y.S. Spatial dispersion of multilayer fishnet metamaterials. Opt. Express 2012, 20, 15100. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Diaz, J.S.; Tymchenko, M.; Alù, A. Hyperbolic plasmons and topological transitions over uniaxial metasurfaces. Phys. Rev. Lett. 2015, 114, 233901. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Diaz, J.S.; Alù, A. Flatland optics with hyperbolic metasurfaces. ACS Photonics 2016, 3, 2211. [Google Scholar] [CrossRef]
- Wood, B.; Pendry, J.B.; Tsai, D.P. Directed subwavelength imaging using a layered metal-dielectric system. Phys. Rev. B 2006, 74, 115116. [Google Scholar] [CrossRef] [Green Version]
- Avrutsky, I.; Salakhutdinov, I.; Elser, J.; Podolskiy, V. Highly confined optical modes in nanoscale metal-dielectric multilayers. Phys. Rev. B 2007, 75, 242402. [Google Scholar] [CrossRef]
- Liu, Z.; Lee, H.; Xiong, Y.; Sun, C.; Zhang, C. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 2007, 315, 1686. [Google Scholar] [CrossRef] [Green Version]
- Iorsh, I.; Poddubny, A.; Orlov, A.; Belov, P.; Kivshar, Y.S. Spontaneous emission enhancement in metal–dielectric metamaterials. Phys. Lett. A. 2012, 376, 185–187. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Cortes, C.L.; Molesky, S.; Jacob, S. Broadband super-Planckian thermal emission from hyperbolic metamaterials. Appl. Phys. Lett. 2012, 101, 131106. [Google Scholar] [CrossRef] [Green Version]
- Biehs, S.-A.; Tschikin, M.; Ben-Abdallah, P. Hyperbolic metamaterials as an analog of a blackbody in the near field. Phys. Rev. Lett. 2012, 109, 104301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nefedov, I.S.; Simovski, C.R. Giant radiation heat transfer through micron gaps. Phys. Rev. B 2011, 84, 195459. [Google Scholar] [CrossRef] [Green Version]
- Schoche, S.; Ho, P.-H.; Roberts, J.A.; Yu, S.J.; Fan, J.A.; Falk, A.L. Mid-IR and UV-Vis-NIR Mueller matrix ellipsometry characterization of tunable hyperbolic metamaterials based on self-assembled carbon nanotubes. J. Vac. Sci. Technol. B 2020, 38, 014015. [Google Scholar] [CrossRef]
- Hu, X.; Zheng, D.; Lin, Y.-S. Actively tunable terahertz metamaterial with single-band and dual-band switching characteristic. Appl. Phys. A 2020, 126, 1–9. [Google Scholar] [CrossRef]
- Li, W.; Cheng, Y. Dual-band tunable terahertz perfect metamaterial absorber based on strontium titanate (STO) resonator structure. Opt. Commun. 2020, 462, 125265. [Google Scholar] [CrossRef]
- Lu, T.; Qiu, P.; Lian, J.; Zhang, D.; Zhuang, S. Ultrathin and broadband highly efficient terahertz reflective polarization converter based on four L-shaped metamaterials. Ultrathin and broadband highly efficient terahertz reflective polarization converter based on four L-shaped metamaterials. Opt. Mater. 2019, 95, 109230. [Google Scholar] [CrossRef]
- Li, Z.; Aydin, K.; Ozbay, E. Determination of effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients. Phys. Rev. E 2009, 79, 026610. [Google Scholar] [CrossRef]
- Basharin, A.A.; Chuguevsky, V.; Volsky, N.; Kafesaki, M.; Economou, E.N. Extremely high -factor metamaterials due to anapole excitation. Phys. Rev. B 2017, 95, 035104. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Cong, L.; Singh, R.; Xu, N.; Cao, W.; Zhang, X.; Tian, Z.; Du, L.; Han, J.; Zhang, W. Monolayer graphene sensing enabled by the strong Fano-resonant metasurface. Nanoscale 2016, 8, 17278. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, Y.K.; Manjappa, M.; Cong, L.; Cao, W.; Al-Naib, I.; Zhang, W.; Singh, R. Ultrahigh-Q Fano Resonances in Terahertz Metasurfaces: Strong Influence of Metallic Conductivity at Extremely Low Asymmetry. Adv. Opt. Mater. 2016, 4, 457. [Google Scholar] [CrossRef]
- Cong, L.; Singh, R. Symmetry-protected dual bound states in the continuum in metamaterials. Adv. Opt. Mater. 2019, 7, 1900383. [Google Scholar] [CrossRef]
- Wang, J.; Song, C.; Hang, J.; Hu, Z.; Zhang, F. Tunable Fano resonance based on grating-coupled and graphene-based Otto configuration. Opt. Express 2017, 25, 23880. [Google Scholar] [CrossRef]
- Singh, R.; Al-Naib, I.A.I.; Koch, M.; Zhang, W. Sharp Fano resonances in THz metamaterials. Opt. Express 2011, 19, 6312. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.; Singh, R.; Al-Naib, I.A.I.; He, M.; Taylor, A.J.; Zhang, W. Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials. Opt. Lett. 2012, 37, 3366. [Google Scholar] [CrossRef] [Green Version]
- Offermans, P.; Schaafsma, M.C.; Rodriguez, S.R.K.; Zhang, Y.; Crego-Calama, M.; Brongersma, S.H.; Rivas, J.G. Universal Scaling of the Figure of Merit of Plasmonic Sensors. ACS Nano 2011, 5, 5151. [Google Scholar] [CrossRef]
- Zhu, W.M.; Liu, A.Q.; Bourouina, T.; Tsai, D.P.; Teng, J.H.; Zhang, X.H.; Lo, G.Q.; Kwong, D.L.; Zheludev, N.I. Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy. Nat. Commun. 2012, 3, 1274. [Google Scholar] [CrossRef]
- Huang, Y.; Yan, J.; Ma, C.; Yang, G. Active tuning of the Fano resonance from a Si nanosphere dimer by the substrate effect. Nanoscale Horiz. 2019, 4, 148. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, Y.K.; Manjappa, M.; Krishnamoorthy, H.N.S.; Singh, R. Accessing the High-Q Dark Plasmonic Fano Resonances in Superconductor Metasurfaces. Adv. Opt. Mater. 2016, 4, 1875. [Google Scholar] [CrossRef]
- Gu, J.; Singh, R.; Liu, X.; Zhang, X.; Ma, Y.; Zhang, S.; Maier, S.A.; Tian, Z.; Azad, A.K.; Chen, H.-T.; et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat. Commun. 2012, 3, 1151. [Google Scholar] [CrossRef] [Green Version]
- Xiaofei, W.; Liu, G.; Xia, S.; Meng, H.; Shang, X.; He, P.; Zhai, X. Dynamically tunable Fano resonance based on graphene metamaterials. IEEE Photonics Technol. Lett. 2018, 30, 2147–2150. [Google Scholar]
- Li, Q.; Gupta, M.; Zhang, X.; Wang, S.; Chen, T.; Singh, R.; Han, J.; Zhang, W. Active Control of Asymmetric Fano Resonances with Graphene—Silicon—Integrated Terahertz Metamaterials. Adv. Mater. Technol. 2020, 5, 1900840. [Google Scholar] [CrossRef]
- Lin, Z.; Xu, Z.; Liu, P.; Liang, Z.; Lin, Y.-S.; Lin, Z.; Xu, Z.; Liu, P.; Liang, Z. Polarization-sensitive terahertz resonator using asymmetrical F-shaped metamaterial. Opt. Laser Technol. 2020, 121, 105826. [Google Scholar] [CrossRef]
- Singh, M.R. Photon transparency in metallic photonic crystals doped with an ensemble of nanoparticles. Phys. Rev. A 2009, 79, 013826. [Google Scholar] [CrossRef]
- Singh, M.R.; Davieau, K.; Carson, J.J.L. Effect of quantum interference on absorption of light in metamaterial hybrids. J. Phys. D. Appl. Phys. 2016, 49, 445103. [Google Scholar] [CrossRef]
- Adamo, G.; MacDonald, K.F.; Fu, Y.H.; Wang, C.M.; Tsai, D.P.; de Abajo, F.G.; Zheludev, N.I. Light well: A tunable free-electron light source on a chip. Phys. Rev. Lett. 2009, 103, 113901. [Google Scholar] [CrossRef] [Green Version]
- Adamo, G.; Ou, J.Y.; So, J.K.; Jenkins, S.D.; De Angelis, F.; MacDonald, K.F.; Fabrizio, D.; Ruostekoski, E.J.; Zheludev, N.I. Electron-beam-driven collective-mode metamaterial light source. Phys. Rev. Lett. 2012, 109, 217401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, L.J.; Kaminer, I.; Ilic, O.; Joannopoulos, J.D.; Soljačić, M. Towards graphene plasmon-based free-electron infrared to X-ray sources. Nat. Photonics 2016, 10, 46. [Google Scholar] [CrossRef]
- Plettner, T.; Byer, R.L. Proposed dielectric-based microstructure laser-driven undulator. Phys. Rev. Spec. Top. Accel. Beams 2008, 11, 030704. [Google Scholar] [CrossRef] [Green Version]
- Rosolen, G.; Wong, L.J.; Rivera, N.; Maes, B.; Soljačić, M.; Kaminer, I. Metasurface-based multi-harmonic free-electron light source. Light Sci. Appl. 2018, 7, 64. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Yang, L.; Carmon, T.; Min, B. A narrow-linewidth on-chip toroid Raman laser. IEEE J. Quantum Electron. 2011, 47, 320. [Google Scholar] [CrossRef]
- England, R.J.; Noble, R.J.; Bane, K.; Dowell, D.H.; Ng, C.K.; Spencer, J.E.; Tantawi, S.; Wu, Z.; Byer, R.L.; Peralta, E.; et al. Demonstration of electron acceleration in a laser-driven dielectric microstructure. Rev. Mod. Phys. 2014, 86, 1337. [Google Scholar] [CrossRef] [Green Version]
- Peralta, E.A.; Soong, K.; England, R.J.; Colby, E.R.; Wu, Z.; Montazeri, B.; McGuinness, C.; McNeur, J.; Leedle, K.J.; Walz, D. Demonstration of electron acceleration in a laser-driven dielectric microstructure. Nature 2013, 503, 91. [Google Scholar] [CrossRef] [PubMed]
- Lukianova-Hleb, E.Y.; Ren, X.; Sawant, R.R.; Wu, X.; Torchilin, V.P.; Lapotko, D.O. On-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubbles. Nat. Med. 2014, 20, 778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rousse, A.; Rischel, C.; Gauthier, J.C. Femtosecond x-ray crystallography. Rev. Mod. Phys. 2001, 73, 17. [Google Scholar] [CrossRef]
- Koppens, F.H.; Chang, D.E.; García de Abajo, F.J. Graphene plasmonics: A platform for strong light–matter interactions. Nano Lett. 2011, 11, 3370. [Google Scholar] [CrossRef] [Green Version]
- Jablan, M.; Buljan, H.; Soljačić, M. Plasmonics in graphene at infrared frequencies. Phys. Rev. B 2009, 80, 245435. [Google Scholar] [CrossRef] [Green Version]
- Brar, V.W.; Jang, M.S.; Sherrott, M.; Lopez, J.J.; Atwater, H.A. Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. Nano Lett. 2013, 13, 2541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wenger, T.; Viola, G.; Fogelström, M.; Tassin, P.; Kinaret, J. Optical signatures of nonlocal plasmons in graphene. Phys. Rev. B 2016, 94, 205419. [Google Scholar] [CrossRef] [Green Version]
- Fang, F.; Thongrattanasiri, S.; Schlather, A.; Liu, Z.; Ma, L.; Wang, Y.; Ajayan, P.M.; Nordlander, P.; Halas, N.J.; García de Abajo, F.J. Gated Tunability and Hybridization of Localized Plasmons in Nanostructured Graphene. ACS Nano 2013, 7, 2388. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.R.; Geim, A.K. Fine Structure Constant Defines Visual Transparency of Graphene. Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef] [Green Version]
- Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S.K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768779. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197. [Google Scholar] [CrossRef] [PubMed]
- Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A.C. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501. [Google Scholar] [CrossRef]
- Koppens, F.; Mueller, T.; Avouris, P.; Ferrari, A.C.; Vitiello, M.S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, M.; Palummo, M.; Grossman, J.C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer material. Nano Lett. 2013, 13, 3664. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.-T.; Khan, A.A.; Kidambi, P.R.; Deng, S.; Yetisen, A.K.; Dlubak, B.; Hiralal, P.; Montelongo, Y.; Bowen, J.; Xavier, S.; et al. Graphene-Based Ultrathin Flat Lenses. ACS Photonics 2015, 2, 200–207. [Google Scholar] [CrossRef] [Green Version]
- Skulason, H.S.; Gaskell, P.E.; Szkopek, T. Optical reflection and transmission properties of exfoliated graphite from a graphene monolayer to several hundred graphene layers. Nanotechnology 2010, 21, 295709. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Dai, X.; Guo, J.; Zhang, H.; Wen, S.; Tang, D. Critical coupling with graphene-based hyperbolic metamaterials. Sci. Rep. 2015, 4, 5483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sreekanth, K.V.; ElKabbash, M.; Alapan, Y.; Rashed, A.R.; Gurkan, U.A.; Strangi, G. A multiband perfect absorber based on hyperbolic metamaterials. Sci. Rep. 2016, 6, 26272. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Valentine, J. Metamaterial perfect absorber based hot electron photodetection. Nano Lett. 2014, 14, 3510–3514. [Google Scholar] [CrossRef] [PubMed]
- Pizzi, A.; Rosolen, G.; Wong, L.J.; Ischebeck, R.; Soljačić, M.; Feurer, T.; Kaminer, I. Graphene Metamaterials for Intense, Tunable, and Compact Extreme Ultraviolet and X-Ray Sources. Adv. Sci. 2019, 1901609. [Google Scholar] [CrossRef] [Green Version]
- Ruoff, R. Calling all chemists. Graphene Nat. Nanotechnol. 2008, 3, 10–11. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. Graphite oxide. Chem. Soc. Rev. 2010, 39, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Feng, H.; Li, J. Graphene oxide: Preparation, functionalization, and electrochemical applications. Chem. Rev. 2012, 112, 6027–6053. [Google Scholar] [CrossRef]
- Dikin, D.A.; Stankovich, S.; Zimney, E.J.; Piner, R.D.; Dommett, G.H.B.; Evmenenko, G.; Nguyen, S.T.; Ruoff, R.S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457. [Google Scholar] [CrossRef]
- Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270. [Google Scholar] [CrossRef]
- Dong, L.; Yang, J.; Chhowalla, M.; Loh, K.P. Synthesis and reduction of large sized graphene oxide sheets. Chem. Soc. Rev. 2017, 46, 7306. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Guo, L.; Xia, H.; Chen, Q.-D.; Feng, J.; Sun, H.-B. Photoreduction of Graphene Oxides: Methods, Properties, and Applications. Adv. Opt. Mater. 2014, 2, 10. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, J.; Xu, X.; Liang, Y.; Chu, S.T.; Little, B.E.; Morandotti, R.; Jia, B.; Moss, D.J. Enhanced four-wave mixing in waveguides integrated with graphene oxide. APL Photonics 2018, 3, 120803. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Muller, M.B.; Gilje, S.; Kaner, R.B.; Wallace, G.G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105. [Google Scholar] [CrossRef]
- Ferrari, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47. [Google Scholar] [CrossRef]
- Yang, Y.; Lin, H.; Zhang, B.Y.; Zhang, Y.; Zhang, X.; Yu, A.; Hong, M.; Jia, B. Graphene-Based Multilayered Metamaterials with Phototunable Architecture for on-Chip Photonic Devices. ACS Photonics 2019, 6, 1033–1046. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, Y.; Zhao, J. Graphene-enabled active metamaterial for dynamical manipulation of terahertz reflection/transmission/absorption. Phys. Lett. A 2020, 384, 12684. [Google Scholar] [CrossRef]
- Banerjee, P.; Ghosh, G.; Biswas, S.K. Measurement of dielectric properties of medium loss samples at X-band frequencies. J. Metall. Mater. Sci. 2010, 52, 247–255. [Google Scholar]
- Grenier, K.; Dubuc, D.; Poleni, P.; Kumemura, M.; Toshiyoshi, H.; Fujii, T.; Fujita, H. Integrated broadband microwave and microfluidic sensor dedicated to bioengineering. IEEE. Trans. Microw. Theory Tech. 2009, 57, 3246. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, J.H.; Choi, S.; Jang, I.S.; Choi, J.S.; Jung, H.I. Asymmetric split-ring resonator-based biosensor for detection of label-free stress biomarkers. Appl. Phys. Lett. 2013, 103, 053702l. [Google Scholar] [CrossRef]
- Rawat, V.; Dhobale, S.; Kale, S.N. Ultra-fast selective sensing of ethanol and petrol using microwave-range metamaterial complementary split-ring resonators. J. Appl. Phys. 2014, 116, 164106l. [Google Scholar] [CrossRef]
- Gordon, J.A.; Holloway, C.L.; Booth, J.; Kim, S.; Wang, Y.; BakerJarvis, J.; Novotny, D.R. Fluid interactions with metafilms/metasurfaces for tuning, sensing, and microwave-assisted chemical processes. Phys. Rev. B 2011, 83, 205130. [Google Scholar] [CrossRef]
- Awang, R.A.; Tovar-Lopez, F.J.; Baum, T.; Sriram, S.; Rowe, W.S. Meta-atom microfluidic sensor for measurement of dielectric properties of liquids. J. Appl. Phys. 2017, 121, 094506. [Google Scholar] [CrossRef]
- Withayachumnankul, W.; Jaruwongrungsee, K.; Tuantranont, A.; Fumeaux, C.; Abbott, D. Metamaterial-based microfluidic sensor for dielectric characterization. Sens. Actuators A Phys. 2013, 189, 2331. [Google Scholar] [CrossRef] [Green Version]
- Paris, V.; Grenier, K.; Mata-Contreras, J.; Dubuc, D.; Martín, F. Highly-sensitive microwave sensors based on open complementary split ring resonators (OCSRRs) for dielectric characterization and solute concentration measurement in liquids. IEEE Access 2018, 6, 48324–48338. [Google Scholar]
- Xu, X.; Peng, B.; Li, D.; Zhang, J.; Wong, L.M.; Zhang, Q.; Wang, S.; Xiong, Q. Flexible visible–infrared metamaterials and their applications in highly sensitive chemical and biological sensing. Nano Lett. 2011, 11, 3232–3238. [Google Scholar] [CrossRef]
- Ahn, S.H.; Guo, L.J. Large-area roll-to-roll and roll-to-plate nanoimprint lithography: A step toward high-throughput application of continuous nanoimprinting. ACS Nano 2009, 3, 2304–2310. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.S.; Li, Z. Microwave Metamaterials for Biomedical Sensing, Reference Module in Biomedical Sciences; Elsevier: Amsterdam, Poland, 2021; ISBN 9780128012383. [Google Scholar] [CrossRef]
- Kayal, S.; Shaw, T.; Mitra, D. Design of metamaterial-based compact and highly sensitive microwave liquid sensor. Appl. Phys. A 2019, 126, 1–9. [Google Scholar] [CrossRef]
- Choi, G.; Bahk, Y.-M.; Kang, T.; Lee, Y.; Son, B.H.; Ahn, Y.H.; Seo, M.; Kim, D.-S. Terahertz nanoprobing of semiconductor surface dynamics. Nano Lett. 2017, 17, 6397–6401. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-K.; Kang, J.-H.; Kwon, J.; Lee, J.-S.; Lee, S.; Woo, D.H.; Kim, J.H.; Song, C.-S.; Park, Q.-H.; Seo, M. Nano metamaterials for ultrasensitive Terahertz biosensing. Sci. Rep. 2017, 7, 8146. [Google Scholar] [CrossRef]
- Xu, W.; Xie, L.; Zhu, J.; Tang, L.; Singh, R.; Wang, C.; Ma, Y.; Chen, H.-T.; Ying, Y. Terahertz biosensing with a graphene-metamaterial heterostructure platform. Carbon 2019, 141, 247–252. [Google Scholar] [CrossRef]
- Lee, S.-H.; Choe, J.-H.; Kim, C.; Bae, S.; Kim, J.-S.; Park, Q.-H.; Seo, M. Graphene assisted terahertz metamaterials for sensitive bio-sensing. Sens. Actuators B Chem. 2020, 310, 127841. [Google Scholar] [CrossRef]
- Eleftheriades, G.V.; Iyer, A.K.; Kremer, P.C. Planar negative refractive index media using periodically LC loaded transmission lines. IEEE Trans. Microw. Theory Technol. 2002, 50, 2702–2712. [Google Scholar] [CrossRef]
- Abdolrazzaghi, M.; Daneshmand, M.; Iyer, A.K. Strongly enhanced sensitivity in planar microwave sensors based on metamaterial coupling. IEEE Trans. Microw. Theory Tech. 2018, 66, 1843–1855. [Google Scholar] [CrossRef] [Green Version]
- Ran, L.; Huangfu, J.; Chen, H.; Li, Y.; Zhang, X.; Chen, K.; Kong, J.A. Microwave solid-state left-handed material with a broad bandwidth and an ultralow loss. Phys. Rev. B 2004, 70, 07302. [Google Scholar] [CrossRef]
- Petosa, A.; Norwood, M.A. Artech House Antennas and Propagation Library; Artech House Publishers: Norwood, MA, USA, 2007. [Google Scholar]
- Kumar, J.; Gupta, N. Performance analysis of dielectric resonator antennas. Wirel. Pers. Commun. 2014, 75, 1029–1049. [Google Scholar] [CrossRef]
- Luk, K.M.; Leung, K.W. Both of the City University of Hong Kong; Research Studies Press Limited: Hertforodshire, UK, 2002. [Google Scholar]
- Kumar, J.; Gupta, N. Bandwidth and gain enhancement technique for Gammadion cross dielectric resonator antenna. Wirel. Pers. Commun. 2015, 85, 2309–2317. [Google Scholar] [CrossRef]
- Kumar, J.; Gupta, N. Linearly polarized asymmetric dielectric resonator antenna for 5.2-GHz WLAN applications. J. Electromagn. Waves Appl. 2015, 29, 1228–1237. [Google Scholar] [CrossRef]
- Petosa, A.; Ittipiboon, A. Dielectric resonator antennas: A historical review and the current state of the art. IEEE Antennas Propag. Mag. 2010, 52, 91–116. [Google Scholar] [CrossRef]
- Kumar, P.; Dwari, S.; Kumar, J. Design of biodegradable quadruple-shaped DRA for WLAN/Wi-Max applications. J. Microw. Optoelectron. Electromagn. Appl. 2017, 16, 867–880. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Kapoor, P.; Kumar, P.; Kumar, J.; Kumar, A. Metamaterial loaded aperture coupled biodegradable star—shaped dielectric resonator antenna for WLAN and broadband applications. Microw. Opt. Technol. Lett. 2019, 62, 264–277. [Google Scholar] [CrossRef]
- Dong, Y.; Itoh, T. Metamaterial-based antennas Metamaterial-based antennas. Proc. IEEE 2012, 100, 2271–2285. [Google Scholar] [CrossRef]
- Gong, J.Q.; Jiang, J.B.; Liang, C.H. Low-profile folded-monopole antenna with unbalanced composite right-/left-handed transmission line. Electron. Lett. 2012, 48, 813–815. [Google Scholar] [CrossRef]
- Iizuka, H.; Hall, P.S. Left-handed dipole antennas and their implementations. IEEE Trans. Antennas Propag. 2007, 55, 1246–1253. [Google Scholar] [CrossRef]
- Zhu, J.; George, V.E. A compact transmission-line metamaterial antenna with extended bandwidth. IEEE Antennas Wirel. Propag. Lett. 2008, 8, 295–298. [Google Scholar]
- Herraiz-Martínez, F.J.; Hsll, P.S.; Liu, Q.; Segovia-Vargas, D. Left-handed wire antennas over ground plane with wideband tuning. IEEE Trans. Antennas Propag. 2011, 59, 1460–1471. [Google Scholar] [CrossRef]
- Mehdipour, A.; Denidni, T.A.; Sebak, A.R. Multi-band miniaturized antenna loaded by ZOR and CSRR metamaterial structures with monopolar radiation pattern. IEEE Trans. Antennas Propag. 2013, 62, 555–562. [Google Scholar] [CrossRef]
- Elwi, T.A. A miniaturized folded antenna array for MIMO applications. Wirel. Pers. Commun. 2018, 98, 1871–1883. [Google Scholar] [CrossRef]
- Sanborn, A.F.; Phillips, P.K. Scaling of sound pressure level and body size in cicadas (Homoptera: Cicadidae; Tibicinidae). Ann. Entomol. Soc. Am. 1995, 88, 479–484. [Google Scholar] [CrossRef]
- Hart, P.J.; Hall, R.; Ray, W.; Beck, A.; Zook, J. Cicadas impact bird communication in a noisy tropical rainforest. Behav. Ecol. 2015, 26, 839–842. [Google Scholar] [CrossRef] [Green Version]
- Zou, H.-X.; Zhao, L.-C.; Gao, Q.-H.; Zuo, L.; Liu, F.-R.; Tan, T.; Wei, K.-X.; Zhang, W.-M. Mechanical modulations for enhancing energy harvesting: Principles, methods and applications. Appl. Energy 2019, 255, 113871. [Google Scholar] [CrossRef]
- Tan, T.; Yan, Z.; Lei, H. Optimization and performance comparison for galloping-based piezoelectric energy harvesters with alternating-current and direct-current interface circuits. Smart Mater. Struct. 2017, 26, 075007. [Google Scholar] [CrossRef]
- Chen, Z.S.; Guo, B.; Yang, Y.M.; Cheng, C.C. Metamaterials-based enhanced energy harvesting: A review. Physical B 2014, 438, 1–8. [Google Scholar] [CrossRef]
- Peng, X.; Wen, Y.M.; Li, P.; Yang, A.C.; Bai, X.L. Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial. Appl. Phys. Lett. 2013, 103, 4. [Google Scholar]
- Park, C.-S.; Shin, Y.C.; Jo, S.-H.; Yoon, H.; Choi, W.; Youn, B.D.; Kim, M. Two-dimensional octagonal phononic crystals for highly dense piezoelectric energy harvesting. Nano Energy 2018, 57. [Google Scholar] [CrossRef]
- Bin, L.; You, J.H.; Kim, Y.-J. Low frequency acoustic energy harvesting using PZT piezoelectric plates in a straight tube resonator. Smart Mater. Struct. 2013, 22, 055013. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, X.; Mao, Y.; Zhu, Y.Y.; Yang, Z.; Chan, C.T.; Sheng, D.P. Locally resonant sonic materials. Science 2000, 289, 1734–1736. [Google Scholar] [CrossRef]
- Song, C.; Huang, Y.; Zhou, J.; Carter, P. Recent advances in broadband rectennas for wireless power transfer and ambient RF energy harvesting. In Proceedings of the 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017; pp. 341–345. [Google Scholar] [CrossRef]
- Stuart, T.; Cai, L.; Burton, A.; Gutruf, P. Wireless and battery-free platforms for collection of biosignals. Biosens. Bioelectron. 2021, 178, 113007. [Google Scholar] [CrossRef]
- Raza, U.; Salam, A. On-Site and External Energy Harvesting in Underground Wireless. Electronics 2020, 9, 681. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Zhou, Y.; Ning, Z.; Gharavi, H. Wireless Power Transfer and Energy Harvesting: Current Status and Future Prospects. IEEE Wirel. Commun. 2019, 26, 163–169. [Google Scholar] [CrossRef]
- Das, R.; Basir, A.; Yoo, H. A Metamaterial-Coupled Wireless Power Transfer System Based on Cubic High-Dielectric Resonators. IEEE Trans. Ind. Electron. 2019, 66, 7397–7406. [Google Scholar] [CrossRef] [Green Version]
- Yongmin, L.; Zhang, X. Metamaterials: A new frontier of science and technology. Chem. Soc. Rev. 2011, 40, 2494–2507. [Google Scholar]
- Cummer, S.A.; Christensen, J.; Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 2016, 1, 16001. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Chan, C.T. Acoustic cloaking in three dimensions using acoustic metamaterials. Appl. Phys. Lett. 2007, 91, 183518. [Google Scholar] [CrossRef]
- Wang, X.; Xu, J.; Ding, J.; Zhao, C.; Huang, Z. A compact and low-frequency acoustic energy harvester using layered acoustic metamaterials. Smart Mater. Struct. 2019, 28, 025035. [Google Scholar] [CrossRef]
- Oudich, M.; Li, Y. Tunable sub-wavelength acoustic energy harvesting with a metamaterial plate. J. Phys. D Appl. Phys. 2017, 50, 315104. [Google Scholar] [CrossRef]
- Ma, J.; Wang, Z.-H.; Liu, H.; Fan, Y.-X.; Tao, Z.-Y. Active Switching of Extremely High-Q Fano Resonances Using Vanadium Oxide-Implanted Terahertz Metamaterials. Appl. Sci. 2020, 10, 330. [Google Scholar] [CrossRef] [Green Version]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef]
- Chaurasiya, D.; Ghosh, S.; Bhattacharyya, S.; Srivastava, K.V. An ultrathin quad-band polarization-insensitive wide-angle metamaterial absorber. Microw. Opt. Technol. Lett. 2015, 57, 697–702. [Google Scholar] [CrossRef]
- Cheng, Y.Z.; Fang, C.; Zhang, Z.; Wang, B.; Chen, J.; Gong, R.Z. A compact and polarization-insensitive perfect metamaterial absorber for electromagnetic energy harvesting application. In Proceedings of the Progress in Electromagnetic Research Symposium (PIERS), Shanghai, China, 8–11 August 2016; 1910; pp. 1910–1914. [Google Scholar]
- Yagitani, S.; Katsuda, K.; Nojima, M.; Yoshimura, Y.; Sugiura, H. Imaging radio-frequency power distributions by an EBG absorber. IEICE Trans. Commun. 2011, 94, 2306–2315. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, B.; Liu, H.-X.; Liang, C.-H. Locally resonant cavity cell model for electromagnetic band gap structures. IEEE Trans. Antennas Propag. 2006, 54, 90–100. [Google Scholar] [CrossRef]
- Alkurt, F.O.; Altintas, O.; Ozakturk, M.; Karaaslan, M.; Akgol, O.; Unal, E.; Sabah, C. Enhancement of image quality by using metamaterial inspired energy harvester. Phy. Lett. A 2020, 384, 126041. [Google Scholar] [CrossRef]
- Jung, P.; Ustinov, A.V.; Anlage, S.M. Progress in superconducting metamaterials. Supercond. Sci. Technol. 2014, 27, 073001. [Google Scholar] [CrossRef]
- Banerjee, P.; Franco, A., Jr. Role of higher valent substituent on the dielectric and optical properties of Sr0.8Bi2.2Nb2O9 ceramics. Mater. Chem. Phys. 2019, 225, 213–218. [Google Scholar] [CrossRef]
- Lazarides, N.; Tsironis, G.P. Multistability and self-organization in disordered SQUID metamaterials. Supercond. Sci. Technol. 2013, 26, 084006. [Google Scholar] [CrossRef]
- Trepanier, M.; Zhang, D.; Mukhanov, O.; Anlage, S.M. Realization and modeling of metamaterials made of rf superconducting quantum-interference devices. Phys. Rev. X 2013, 3, 041029. [Google Scholar] [CrossRef] [Green Version]
- Josephson, B. Possible new effects in superconductive tunnelling. Phys. Lett. A 1962, 1, 251–255. [Google Scholar] [CrossRef]
- Du, C.; Chen, H.; Li, S. Quantum left-handed metamaterial from superconducting quantum-interference devices. Phys. Rev. B 2006, 74, 113105. [Google Scholar] [CrossRef] [Green Version]
- Lazarides, N.; Tsironis, G.P. RF superconducting quantum interference device metamaterials. Appl. Phys. Lett. 2007, 90, 163501. [Google Scholar] [CrossRef] [Green Version]
- Fedotov, V.A.; Tsiatmas, A.; Shi, J.H.; Buckingham, R.; De Groot, P.; Chen, Y.; Zheludev, N.I. Temperature control of Fano resonances and transmission in superconducting metamaterials. Opt. Express 2010, 18, 9015–9019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, P.; Butz, S.; Marthaler, M.; Fistul, M.V.; Leppäkangas, J.; Koshelets, V.P.; Ustinov, A.V. Multistability and switching in a superconducting metamaterial. Nat. Commun. 2014, 5, 3730. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Trepanier, M.; Mukhanov, O.; Anlage, S.M. Tunable broadband transparency of macroscopic quantum superconducting metamaterials. Phys. Rev. X 2015, 5, 041045. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Trepanier, M.; Antonsen, T.; Ott, E.; Anlage, S.M. Intermodulation in nonlinear SQUID metamaterials: Experiment and theor. Phys. Rev. B 2016, 94, 174507. [Google Scholar] [CrossRef] [Green Version]
- Kiselev, E.I.; Averkin, A.S.; Fistul, M.V.; Koshelets, V.P.; Ustinov, A.V. Two-tone spectroscopy of a SQUID metamaterial in the nonlinear regime. Phys. Rev. Res. 2019, 1, 033096. [Google Scholar] [CrossRef] [Green Version]
- Trepanier, M.; Zhang, D.; Mukhanov, O.; Koshelets, V.P.; Jung, P.; Butz, S.; Ott, E.; Antonsen, T.M.; Ustinov, A.V.; Anlage, S.M. Coherent oscillations of driven rf SQUID metamaterials. Phys. Rev. E 2017, 95, 050201. [Google Scholar]
- Saito, S.; Zhu, X.; Amsüss, R.; Matsuzaki, Y.; Kakuyanagi, K.; Shimo-Oka, T.; Mizuochi, N.; Nemoto, K.; Munro, W.J.; Semba, K. Towards realizing a quantum memory for a superconducting qubit: Storage and retrieval of quantum states. Phys. Rev. Lett. 2013, 111, 107008. [Google Scholar] [CrossRef] [Green Version]
- Shulga, K.V.; Il’chev, E.; Fistul, M.V.; Besedin, I.S.; Butz, S.; Astafiev, O.V.; Hübner, U.; Ustinov, A.V. Magnetically induced transparency of a quantum metamaterial composed of twin flux qubits. Nat. Commun. 2018, 9, 150. [Google Scholar] [CrossRef] [Green Version]
- Cross, M.C.; Hohenberg, P.C. Pattern formation outside of equilibrium. Rev. Mod. Phys. 1993, 65, 851. [Google Scholar] [CrossRef] [Green Version]
- Showalter, K.; Epstein, I.R. From chemical systems to systems chemistry: Patterns in space and time. Chaos 2015, 25, 097613. [Google Scholar] [CrossRef] [Green Version]
- Turing, A.M. The chemical basis of morphogenesis. Philos. Trans. R. Soc. B 1952, 237, 37–72. [Google Scholar]
- Koch, A.J.; Meinhardt, H. Biological pattern formation: From basic mechanisms to complex structures. Rev. Mod. Phys. 1994, 66, 1481. [Google Scholar] [CrossRef]
- Lazarides, N.; Tsironis, G.P. Superconducting metamaterials. Phys. Rep. 2018, 752, 1–67. [Google Scholar] [CrossRef] [Green Version]
- Hizanidis, J.; Lazarides, N.; Tsironis, G.P. Pattern formation and chimera states in 2D SQUID metamaterials. Chaos 2020, 30, 013115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuravel, A.P.; Bae, S.; Lukashenko, A.V.; Averkin, A.S.; Ustinov, A.V.; Anlage, S.M. Imaging collective behavior in an rf-SQUID metamaterial tuned by DC and RF magnetic fields. Appl. Phys. Lett. 2019, 114, 082601. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suresh Kumar, N.; Naidu, K.C.B.; Banerjee, P.; Anil Babu, T.; Venkata Shiva Reddy, B. A Review on Metamaterials for Device Applications. Crystals 2021, 11, 518. https://doi.org/10.3390/cryst11050518
Suresh Kumar N, Naidu KCB, Banerjee P, Anil Babu T, Venkata Shiva Reddy B. A Review on Metamaterials for Device Applications. Crystals. 2021; 11(5):518. https://doi.org/10.3390/cryst11050518
Chicago/Turabian StyleSuresh Kumar, N., K. Chandra Babu Naidu, Prasun Banerjee, T. Anil Babu, and B. Venkata Shiva Reddy. 2021. "A Review on Metamaterials for Device Applications" Crystals 11, no. 5: 518. https://doi.org/10.3390/cryst11050518
APA StyleSuresh Kumar, N., Naidu, K. C. B., Banerjee, P., Anil Babu, T., & Venkata Shiva Reddy, B. (2021). A Review on Metamaterials for Device Applications. Crystals, 11(5), 518. https://doi.org/10.3390/cryst11050518