Adducts of Rhodium(II) Acetate and Rhodium(II) Pivalate with 1,8-Diazabicyclo[5.4.0]undec-7-ene
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Information
2.2. Synthesis
2.3. Single-Crystal X-ray Diffraction Analysis
3. Results and Discussion
3.1. Synthesis and Characterization of 1 and 2
3.2. Crystal Structures of 1 and 2
3.3. Hirshfeld Surface Analysis
3.4. Ultraviolet-Visible Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hansen, J.; Davies, H.M.L. High symmetry dirhodium(II) paddlewheel complexes as chiral catalysts. Coord. Chem. Rev. 2008, 252, 545–555. [Google Scholar] [CrossRef] [Green Version]
- Snyder, J.P.; Padwa, A.; Stengel, T.; Arduengo, A.J.; Jockisch, A.; Kim, H.-J. A Stable Dirhodium Tetracarboxylate Carbenoid: Crystal Structure, Bonding Analysis, and Catalysis. J. Am. Chem. Soc. 2001, 123, 11318–11319. [Google Scholar] [CrossRef]
- de Souza, A.R.; Najjar, R.; Glikmanas, S.; Ber Zyngier, S. Water-soluble rhodium(II) carboxylate adducts: Cytotoxicity of the new compounds. J. Inorg. Biochem. 1996, 64, 1–5. [Google Scholar] [CrossRef]
- Katsaros, N.; Anagnostopoulou, A. Rhodium and its compounds as potential agents in cancer treatment. Crit. Rev. Oncol. Hematol. 2002, 42, 297–308. [Google Scholar] [CrossRef]
- Rahman, M.M.; Yasuda, H.; Katsura, S.; Mizuno, A. Inhibition of endonuclease cleavage and DNA replication of E. coli plasmid by the antitumor rhodium(II) complex. Arch. Biochem. Biophys. 2007, 464, 28–35. [Google Scholar] [CrossRef]
- Hilderbrand, S.A.; Lim, M.H.; Lippard, S.J. Dirhodium tetracarboxylate scaffolds as reversible fluorescence-based nitric oxide sensors. J. Am. Chem. Soc. 2004, 126, 4972–4978. [Google Scholar] [CrossRef]
- Koo, E.; Yang, L.-H.; Ahn, D.J. A “turn-on” fluorescent microbead sensor for detecting nitric oxide. Int. J. Nanomed. 2014, 10, 115–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moragues, M.E.; Esteban, J.; Ros-Lis, J.V.; Martinez-Manez, R.; Marcos, M.D.; Martinez, M.; Soto, J.; Sancenon, F. Sensitive and Selective Chromogenic Sensing of Carbon Monoxide via Reversible Axial CO Coordination in Binuclear Rhodium Complexes. J. Am. Chem. Soc. 2011, 133, 15762–15772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pannek, C.; Tarantik, K.; Schmitt, K.; Wöllenstein, J. Investigation of Gasochromic Rhodium Complexes Towards Their Reactivity to CO and Integration into an Optical Gas Sensor for Fire Gas Detection. Sensors 2018, 18, 1994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cotton, F.A.; Lin, C.; Murillo, C.A. Supramolecular Arrays Based on Dimetal Building Units. Acc. Chem. Res. 2001, 34, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Pirillo, J.; Hijikata, Y. Trans Influence across a Metal–Metal Bond of a Paddle-Wheel Unit on Interaction with Gases in a Metal–Organic Framework. Inorg. Chem. 2020, 59, 1193–1203. [Google Scholar] [CrossRef] [PubMed]
- Reger, D.L.; Debreczeni, A.; Smith, M.D. Rhodium paddlewheel dimers containing the π···π stacking, 1,8-naphthalimide supramolecular synthon. Inorg. Chim. Acta 2011, 378, 42–48. [Google Scholar] [CrossRef]
- Adly, F.G.; Ghanem, A. Chiral Dirhodium(II) Carboxylates and Carboxamidates as Effective Chemzymes in Asymmetric Synthesis of Three-Membered Carbocycles. Chirality 2014, 26, 692–711. [Google Scholar] [CrossRef] [PubMed]
- Pirrung, M.C.; Liu, H.; Morehead, A.T. Rhodium Chemzymes: Michaelis−Menten Kinetics in Dirhodium(II) Carboxylate-Catalyzed Carbenoid Reactions. J. Am. Chem. Soc. 2002, 124, 1014–1023. [Google Scholar] [CrossRef] [PubMed]
- Bugg, T. Introduction to Enzyme and Coenzyme Chemistry, 2nd ed.; Blackwell Publishing Ltd: Oxford, UK, 1997. [Google Scholar]
- Waldrop, M.M. “Chemzymes” Mimic Biology in Miniature. Science 1989, 245, 354–355. [Google Scholar] [CrossRef]
- Hrdina, R. Dirhodium(II,II) Paddlewheel Complexes. Eur. J. Inorg. Chem. 2021, 2021, 501–528. [Google Scholar] [CrossRef]
- Cotton, F.A.; Murillo, C.A.; Walton, R.A. Multiple Bonds between Metal. Atoms, 3rd ed.; Springer Science and Business Media: New York, NY, USA, 2005. [Google Scholar]
- Cotton, F.A.; Hillard, E.A.; Murillo, C.A. The First Dirhodium Tetracarboxylate Molecule without Axial Ligation: New Insight into the Electronic Structures of Molecules with Importance in Catalysis and Other Reactions. J. Am. Chem. Soc. 2002, 124, 5658–5660. [Google Scholar] [CrossRef]
- Handa, M.; Nakao, T.; Mikuriya, M.; Kotera, T.; Nukada, R.; Kasuga, K. Chain Complexes of Rhodium(II) Pivalate Dimers Formed by Ligation of C=C Double Bond and Carbonyl Oxygen of p-Quinone [{Rh2(O2CCMe3)4(p-Q)2}{Rh2(O2CCMe3)4}]n, p-Q = 1,4-Benzoquinone and 1,4-Naphthoquinone. Inorg. Chem. 1998, 37, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Bourhis, L.J.; Dolomanov, O.V.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment—Olex2 dissected. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 59–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Koh, Y.B.; Christoph, G.G. Metal-Metal Bonding in Dirhodium Tetracarboxylates. Structure of the Bis(pyridine) Adduct of Tetra-µ-acetato-dirhodium(II). Inorg. Chem. 1978, 17, 2590–2596. [Google Scholar] [CrossRef]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Spackman, M.A.; McKinnon, J.J. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 2002, 4, 378–392. [Google Scholar] [CrossRef]
- Turner, M.J.; McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Visualisation and characterisation of voids in crystalline materials. CrystEngComm 2011, 13, 1804–1813. [Google Scholar] [CrossRef]
- Berry, J.F. The role of three-center/four-electron bonds in superelectrophilic dirhodium carbene and nitrene catalytic intermediates. Dalton Trans. 2012, 41, 700–713. [Google Scholar] [CrossRef]
- Kataoka, Y.; Fukumoto, R.; Yano, N.; Atarashi, D.; Tanaka, H.; Kawamoto, T.; Handa, M. Synthesis, Characterization, Absorption Properties, and Electronic Structures of Paddlewheel-Type Dirhodium(II) Tetra-μ-(n-naphthoate) Complexes: An Experimental and Theoretical Study. Molecules 2019, 24, 447. [Google Scholar] [CrossRef] [Green Version]
- Gutmann, V. Empirical parameters for donor and acceptor properties of solvents. Electrochim. Acta 1976, 21, 661–670. [Google Scholar] [CrossRef]
- Gutmann, V. Solvent effects on the reactivities of organometallic compounds. Coord. Chem. Rev. 1976, 18, 225–255. [Google Scholar] [CrossRef]
- Aggarwal, V.K.; Mereu, A. Amidine-Promoted Addition of Chloroform to Carbonyl Compounds. J. Org. Chem. 2000, 65, 7211–7212. [Google Scholar] [CrossRef]
- Koyama, M.; Kawakami, T.; Okazoe, T.; Nozaki, K. Cyanide-Free One-Pot Synthesis of Methacrylic Esters from Acetone. Chem. Eur. J. 2019, 25, 10913–10917. [Google Scholar] [CrossRef] [PubMed]
- Warzecha, E.; Berto, T.C.; Berry, J.F. Axial Ligand Coordination to the C-H Amination Catalyst Rh2(esp)2: A Structural and Spectroscopic Study. Inorg. Chem. 2015, 54, 8817–8824. [Google Scholar] [CrossRef] [PubMed]
- Warzecha, E.; Berto, T.C.; Wilkinson, C.C.; Berry, J.F. Rhodium Rainbow: A Colorful Laboratory Experiment Highlighting Ligand Field Effects of Dirhodium Tetraacetate. J. Chem. Educ. 2019, 96, 571–576. [Google Scholar] [CrossRef]
Compound | [Rh2(μ-O2CCH3)4(DBU)2]·4CHCl3 (1·4CHCl3) | [Rh2(μ-O2CCMe3)4(DBU)2] (2) |
---|---|---|
Empirical formula | C30H48Cl12N4O8Rh2 | C38H68N4O8Rh2 |
Formula weight | 1223.94 | 914.78 |
Temperature/K | 100.0 | 100.0 |
Crystal system | triclinic | triclinic |
Space group | P-1 | P-1 |
a/Å | 11.4507(16) | 10.5113(7) |
b/Å | 14.1185(19) | 10.8561(7) |
c/Å | 15.891(2) | 11.0178(7) |
α/° | 72.255(6) | 116.211(2) |
β/° | 81.313(5) | 95.558(2) |
γ/° | 72.798(4) | 100.647(2) |
Volume/Å3 | 2332.1(5) | 1085.62(12) |
Z | 2 | 1 |
⍴calcg/cm3 | 1.743 | 1.399 |
μ/mm−1 | 1.443 | 0.810 |
F(000) | 1228.0 | 478.0 |
Crystal size/mm3 | 0.18 × 0.11 × 0.08 | 0.26 × 0.25 × 0.15 |
Radiation | MoKα (λ = 0.71073) | MoKα (λ = 0.71073) |
2Θ range for data collection/° | 4.34 to 63.096 | 4.208 to 63.034 |
Index ranges | −16 ≤ h ≤ 16, −20 ≤ k ≤ 20, −23 ≤ l ≤ 23 | −15 ≤ h ≤ 15, −15 ≤ k ≤ 15, −16 ≤ l ≤ 16 |
Reflections collected | 33,345 | 55,863 |
Independent reflections | 15,457 [Rint = 0.0353, Rsigma = 0.0471] | 7209 [Rint = 0.0407, Rsigma = 0.0200] |
Data/restraints/parameters | 15,457/0/509 | 7209/0/272 |
Goodness-of-fit on F2 | 1.044 | 1.064 |
Final R indices [I >= 2σ (I)] | R1 = 0.0378, wR2 = 0.0798 | R1 = 0.0213, wR2 = 0.0473 |
Final R indexes [all data] | R1 = 0.0550, wR2 = 0.0908 | R1 = 0.0263, wR2 = 0.0499 |
Largest diff. peak/hole / e Å−3 | 1.36/−2.21 | 0.43/−0.87 |
[Rh2(μ-O2CCH3)4(DBU)2]·4CHCl3 | [Rh2(μ-O2CCMe3)4(DBU)2] | |
---|---|---|
Bond | Length (Å) | Length (Å) |
Rh1–Rh1 | 2.4108(3) | 2.4143(2) |
Rh1–O1 | 2.0450(2) | 2.0515(9) |
Rh1–O4 | 2.0376(3) | 2.0272(9) |
Rh1–N1 | 2.2681(3) | 2.2587(10) |
N1–C9 | 1.30104(15) | 1.2922(15) |
C9–N2 | 1.36202(16) | 1.3679(15) |
Bond Set | Dihedral Angle (°) | Dihedral Angle (°) |
Rh1–Rh1–O1 | 88.28(5) | 87.46(3) |
Rh1–Rh1–O4 | 88.54(5) | 87.83(3) |
Rh1–Rh1–N1 | 176.55(6) | 172.39(3) |
O4–Rh1–O3 | 175.74(7) | 175.65(4) |
O4–Rh1–O1 | 87.79(7) | 89.23(4) |
O1–Rh1–N1 | 93.69(7) | 96.40(4) |
D–H···A (Å) | D–H (Å) | H···A (Å) | D···A (Å) | ∠D–H···A (°) |
---|---|---|---|---|
Compound1 | ||||
C27–H27···O1 | 1.00 | 2.57 | 3.41 | 141.8 |
C1–H1B···O2 | 0.99 | 2.54 | 3.21 | 124.6 |
C8–H8B···O3 | 0.99 | 2.27 | 3.21 | 157.4 |
C27–H27···O4 | 1.00 | 2.49 | 3.23 | 130.2 |
C1–H1A···Cl3 | 0.99 | 2.93 | 3.87 | 159.6 |
C28–H28···O2 | 1.00 | 2.27 | 3.12 | 141.9 |
C28–H28···O3 | 1.00 | 2.59 | 3.33 | 130.4 |
C7–H7A···Cl1 | 0.99 | 2.92 | 3.83 | 153.2 |
C30–H30···O5 | 1.00 | 2.46 | 3.18 | 128.6 |
C16–H16A···Cl11 | 0.99 | 2.85 | 3.77 | 155.3 |
C17–H17B···O6 | 0.99 | 2.31 | 3.21 | 151.6 |
C10–H10B···O7 | 0.99 | 2.51 | 3.21 | 128.1 |
C29–H29···O7 | 1.00 | 2.31 | 3.18 | 144.3 |
C29–H29···O6 | 1.00 | 2.51 | 3.32 | 137.4 |
Compound2 | ||||
C8–H8···O1 | 0.99 | 2.55 | 3.30 | 132.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fussell, E.D.; Darko, A. Adducts of Rhodium(II) Acetate and Rhodium(II) Pivalate with 1,8-Diazabicyclo[5.4.0]undec-7-ene. Crystals 2021, 11, 517. https://doi.org/10.3390/cryst11050517
Fussell ED, Darko A. Adducts of Rhodium(II) Acetate and Rhodium(II) Pivalate with 1,8-Diazabicyclo[5.4.0]undec-7-ene. Crystals. 2021; 11(5):517. https://doi.org/10.3390/cryst11050517
Chicago/Turabian StyleFussell, Eric D., and Ampofo Darko. 2021. "Adducts of Rhodium(II) Acetate and Rhodium(II) Pivalate with 1,8-Diazabicyclo[5.4.0]undec-7-ene" Crystals 11, no. 5: 517. https://doi.org/10.3390/cryst11050517
APA StyleFussell, E. D., & Darko, A. (2021). Adducts of Rhodium(II) Acetate and Rhodium(II) Pivalate with 1,8-Diazabicyclo[5.4.0]undec-7-ene. Crystals, 11(5), 517. https://doi.org/10.3390/cryst11050517