Bio-Mediated Soil Improvement Using Plant Derived Enzyme in Addition to Magnesium Ion
Abstract
:1. Introduction
- Extraction and evaluation of urease activity of the crude enzyme (dry condition and germinated condition) and their subsequent effects on temperature and pH.
- Evaluation of urea hydrolysis rate with time considering different Mg2+/Ca2+ ratios.
- Mineralogical and morphological characterization of precipitated carbonate crystals by X-ray powder diffraction test (XRD) and scanning electron microscopy (SEM).
- Finally, evaluation of the unconfined compressive strengths (UCS) of the soil.
- specimens treated with EICP solution at various Mg2+/Ca2+ ratios and subsequent evaluation of the effective bonding patterns in between the sand particles.
2. Materials and Methods
2.1. Extraction of Crude Urease
2.2. Enzyme Catalyzedreaction Rate and CaCO3 Precipitation Test
2.3. Sand Solidification (Syringe) Test
3. Results and Discussion
3.1. Extraction of Cruse Urease
3.2. CaCO3 Precipitation Test
3.3. Sand Solidification (Syringe) Test
4. Conclusions
- Crude extracts from seeds germinated for two days showed a 50% higher urease activity than that extracted from dry seeds.
- It was detected that the Mg2+/Ca2+ ratios are a significant factor influencing both the amount of carbonate precipitation and the ratios of the calcium carbonate polymorphs (calcite, vaterite, aragonite) in EICP process.
- The Mg2+/Ca2+ ratios influence the UCS value of the treated samples. For Mg2+/Ca2+ ratios = 0.11, an improvement of UCS of 50% compared to Mg/Ca = 0 could be demonstrated.
- Our results suggest that calcite is more efficient in binding the sand particles compared to vaterite. Adding a small amount of MgCl2 has a significant effect on the CaCO3 precipitation pattern and bonding between the sand particles during EICP, as it increases the proportion of calcite. However, some major challenges for field implementations of this EICP method still remain in this novel area.
- Nevertheless, the findings of these studies could play a significant role for sand stabilization and other applications in the geotechnical sectors.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Putra, H.; Yasuhara, H.; Erizal; Sutoyo; Fauzan, M. Review of Enzyme-Induced Calcite Precipitation as a Ground-Improvement Technique. Infrastructures 2020, 5, 66. [Google Scholar] [CrossRef]
- Hamed Khodadadi, T.; Kavazanjian, E.; van Paassen, L.; DeJong, J. Bio-Grout Materials: A Review. In Proceedings of the Grouting 2017; American Society of Civil Engineers: Reston, VA, USA, 2017; pp. 1–12. [Google Scholar]
- Miftah, A.; Khodadadi Tirkolaei, H.; Bilsel, H. Bio-precipitation of CaCO3 for soil improvement: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2020, 800, 012037. [Google Scholar] [CrossRef]
- Ahenkorah, I.; Rahman, M.M.; Karim, M.R.; Beecham, S.; Saint, C. A Review of Enzyme Induced Carbonate Precipitation (EICP): The Role of Enzyme Kinetics. Sustain. Chem. 2021, 2, 7. [Google Scholar] [CrossRef]
- Kavazanjian, E.; Hamdan, N. Enzyme Induced Carbonate Precipitation (EICP) Columns for Ground Improvement. In Proceedings of the IFCEE 2015; American Society of Civil Engineers: Reston, VA, USA, 2015; Volume GSP 256, pp. 2252–2261. [Google Scholar]
- Mujah, D.; Shahin, M.A.; Cheng, L. State-of-the-Art Review of Biocementation by Microbially Induced Calcite Precipitation (MICP) for Soil Stabilization. Geomicrobiol. J. 2017, 34, 524–537. [Google Scholar] [CrossRef]
- Rahman, M.M.; Hora, R.N.; Ahenkorah, I.; Beecham, S.; Karim, M.R.; Iqbal, A. State-of-the-Art Review of Microbial-Induced Calcite Precipitation and Its Sustainability in Engineering Applications. Sustainability 2020, 12, 6281. [Google Scholar] [CrossRef]
- De Muynck, W.; De Belie, N.; Verstraete, W. Microbial carbonate precipitation in construction materials: A review. Ecol. Eng. 2010, 36, 118–136. [Google Scholar] [CrossRef]
- Tang, C.-S.; Yin, L.; Jiang, N.; Zhu, C.; Zeng, H.; Li, H.; Shi, B. Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: A review. Environ. Earth Sci. 2020, 79, 94. [Google Scholar] [CrossRef]
- Al-Salloum, Y.; Hadi, S.; Abbas, H.; Almusallam, T.; Moslem, M.A. Bio-induction and bioremediation of cementitious composites using microbial mineral precipitation–A review. Constr. Build. Mater. 2017, 154, 857–876. [Google Scholar] [CrossRef]
- Putri, P.Y.; Ujike, I.; Sandra, N.; Rifwan, F.; Andayono, T. Calcium Carbonate in Bio-Based Material and Factor Affecting Its Precipitation Rate for Repairing Concrete. Crystals 2020, 10, 883. [Google Scholar] [CrossRef]
- Arias, D.; Cisternas, L.; Rivas, M. Biomineralization Mediated by Ureolytic Bacteria Applied to Water Treatment: A Review. Crystals 2017, 7, 345. [Google Scholar] [CrossRef] [Green Version]
- Osinubi, K.J.; Eberemu, A.O.; Ijimdiya, T.S.; Yakubu, S.E.; Gadzama, E.W.; Sani, J.E.; Yohanna, P. Review of the use of microorganisms in geotechnical engineering applications. SN Appl. Sci. 2020, 2, 207. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.S.; Park, W. Current challenges and future directions for bacterial self-healing concrete. Appl. Microbiol. Biotechnol. 2018, 102, 3059–3070. [Google Scholar] [CrossRef]
- Putra, H.; Yasuhara, H.; Kinoshita, N.; Hirata, A. Optimization of Enzyme-Mediated Calcite Precipitation as a Soil-Improvement Technique: The Effect of Aragonite and Gypsum on the Mechanical Properties of Treated Sand. Crystals 2017, 7, 59. [Google Scholar] [CrossRef] [Green Version]
- Nam, I.H.; Chon, C.M.; Jung, K.Y.; Choi, S.G.; Choi, H.; Park, S.S. Calcite precipitation by ureolytic plant (Canavalia ensiformis) extracts as effective biomaterials. KSCE J. Civ. Eng. 2015, 19, 1620–1625. [Google Scholar] [CrossRef]
- Davis, K.J. The Role of Mg2+ as an Impurity in Calcite Growth. Science 2000, 290, 1134–1137. [Google Scholar] [CrossRef]
- Natarajan, K.R. Kinetic study of the enzyme urease from Dolichos biflorus. J. Chem. Educ. 1995, 73, 556–557. [Google Scholar] [CrossRef]
- Wani, A.A.; Sogi, D.S.; Singh, P.; Wani, I.A.; Shivhare, U.S. Characterisation and functional properties of watermelon (Citrullus lanatus) seed proteins. J. Sci. of Food Agric. 2011, 91, 113–121. [Google Scholar] [CrossRef]
- Abas Wani, A.; Sogi, D.S.; Grover, L.; Saxena, D.C. Effect of Temperature, Alkali Concentration, Mixing Time and Meal/Solvent Ratio on the Extraction of Watermelon Seed Proteins—A Response Surface Approach. Biosyst. Eng. 2006, 94, 67–73. [Google Scholar] [CrossRef]
- Javadi, N.; Khodadadi, H.; Hamdan, N.; Kavazanjian, E. EICP Treatment of Soil by Using Urease Enzyme Extracted from Watermelon Seeds. In Proceedings of the IFCEE 2018; American Society of Civil Engineers: Reston, VA, USA, 2018; pp. 115–124. [Google Scholar]
- Dilrukshi, R.A.N.; Nakashima, K.; Kawasaki, S. Soil improvement using plant-derived urease-induced calcium carbonate precipitation. Soils Found. 2018, 58, 894–910. [Google Scholar] [CrossRef]
- Feder, M.J.; Akyel, A.; Morasko, V.J.; Gerlach, R.; Phillips, A.J. Temperature-dependent inactivation and catalysis rates of plant-based ureases for engineered biomineralization. Eng. Rep. 2021, 3. [Google Scholar] [CrossRef]
- Blakeley, R.L.; Zerner, B. Jack bean urease: The first nickel enzyme. J. Mol. Catal. 1984, 23, 263–292. [Google Scholar] [CrossRef]
- Dixon, N.E.; Gazzola, C.; Blakeley, R.L.; Zerner, B. Jack bean urease (EC 3.5.1.5). Metalloenzyme. Simple biological role for nickel. J. Am. Chem. Soc. 1975, 97, 4131–4133. [Google Scholar] [CrossRef]
- Weber, M.; Jones, M.J.; Ulrich, J. Optimisation of isolation and purification of the jack bean enzyme urease by extraction and subsequent crystallization. Food Bioprod. Process. 2008, 86, 43–52. [Google Scholar] [CrossRef]
- EL-Hefnawy, M.E.; Sakran, M.; Ismail, A.I.; Aboelfetoh, E. Extraction, purification, kinetic and thermodynamic properties of urease from germinating Pisum Sativum L. seeds. BMC Biochem. 2014, 15, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labana, S.; Singh, O.V.; Basu, A.; Pandey, G.; Jain, R.K. A microcosm study on bioremediation of p-nitrophenol-contaminated soil using Arthrobacter protophormiae RKJ100. Appl. Microbiol. Biotechnol. 2005, 68, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Neupane, D.; Yasuhara, H.; Kinoshita, N.; Unno, T. Applicability of Enzymatic Calcium Carbonate Precipitation as a Soil-Strengthening Technique. J. Geotech. Geoenviron. Eng. 2013, 139, 2201–2211. [Google Scholar] [CrossRef]
- Cui, M.-J.; Lai, H.-J.; Hoang, T.; Chu, J. One-phase-low-pH enzyme induced carbonate precipitation (EICP) method for soil improvement. Acta Geotech. 2021, 16, 481–489. [Google Scholar] [CrossRef]
- Rohy, H.; Arab, M.; Zeiada, W.; Omar, M.; Almajed, A.; Tahmaz, A. One Phase Soil Bio-Cementation with EICP-Soil Mixing. In Proceedings of the World Congress on Civil, Structural, and Environmental Engineering, Rome, Italy, 7–9 April 2019. [Google Scholar]
- Cheng, L.; Shahin, M.A.; Asce, M.; Mujah, D. Influence of Key Environmental Conditions on Microbially Induced Cementation for Soil Stabilization. J. Geotech. Geoenviron. Eng 2017, 143, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Khodadadi Tirkolaei, H.; Javadi, N.; Krishnan, V.; Hamdan, N.; Kavazanjian, E. Crude Urease Extract for Biocementation. J. Mater. Civ. Eng. 2020, 32, 04020374. [Google Scholar] [CrossRef]
- Katz, A. The interaction of magnesium with calcite during crystal growth at 25–90 °C and one atmosphere. Geochim. Cosmochim. Acta 1973, 37, 1563–1586. [Google Scholar] [CrossRef]
- Doner, H.E.; Pratt, P.F. Solubility of Calcium Carbonate Precipitated in Aqueous Solutions of Magnesium and Sulfate Salts. Soil Sci. Soc. Am. J. 1969, 33, 690–693. [Google Scholar] [CrossRef]
- Chandra, A.; Ravi, K. Effect of Magnesium Incorporation in Enzyme-Induced Carbonate Precipitation (EICP) to Improve Shear Strength of Soil. In Lecture Notes in Civil Engineering; Springer: Singapore, 2020; Volume 56, pp. 333–346. [Google Scholar]
- Xia, H.; Zhou, M.; Wei, X.; Zhang, X.; Wu, Z. Slow and Sustained Release of Carbonate Ions from Amino Acids for Controlled Hydrothermal Growth of Alkaline-Earth Carbonate Single Crystals. ACS Omega 2020, 5, 14123–14132. [Google Scholar] [CrossRef]
- Wang, Y.; Mao, X.; Xiao, W.; Wang, W. The Influence Mechanism of Magnesium Ions on the Morphology and Crystal Structure of Magnetized Anti-Scaling Products. Minerals 2020, 10, 997. [Google Scholar] [CrossRef]
- Xu, X.; Guo, H.; Cheng, X.; Li, M. The promotion of magnesium ions on aragonite precipitation in MICP process. Constr. Build. Mater. 2020, 263, 120057. [Google Scholar] [CrossRef]
- Sun, X.; Miao, L.; Wu, L.; Wang, C. Study of magnesium precipitation based on biocementation. Mar. Georesources Geotechnol. 2019, 37, 1257–1266. [Google Scholar] [CrossRef]
- Nayanthara, P.G.N.; Dassanayake, A.B.N.; Nakashima, K.; Kawasaki, S. Microbial Induced Carbonate Precipitation Using a Native Inland Bacterium for Beach Sand Stabilization in Nearshore Areas. Appl. Sci. 2019, 9, 3201. [Google Scholar] [CrossRef] [Green Version]
- Arab, M.G.; Rohy, H.; Zeiada, W.; Almajed, A.; Omar, M. One-Phase EICP Biotreatment of Sand Exposed to Various Environmental Conditions. J. Mater. Civ. Eng. 2021, 33, 04020489. [Google Scholar] [CrossRef]
- Sulistiawati Baiq, H. Examination Of Calcite Precipitation Using Plant-Derived Urease Enzyme For Soil Improvement. Int. J. GEOMATE 2020, 19. [Google Scholar] [CrossRef]
- Cuccurullo, A.; Gallipoli, D.; Bruno, A.W.; Augarde, C.; Hughes, P.; La Borderie, C. Earth stabilisation via carbonate precipitation by plant-derived urease for building applications. Geomech. Energy Environ. 2020, 100230. [Google Scholar] [CrossRef]
Urea (mol/L) | CaCl2 (mol/L) | MgCl2 (mol/L) | Mg2+/Ca2+ Ratio |
---|---|---|---|
0.50 | 0.50 | 0.00 | 0.00 |
0.50 | 0.45 | 0.05 | 0.11 |
0.50 | 0.40 | 0.10 | 0.25 |
0.50 | 0.35 | 0.15 | 0.43 |
0.50 | 0.30 | 0.20 | 0.67 |
0.50 | 0.25 | 0.25 | 1.00 |
Physical Property | Mikawa Sand |
---|---|
Maximum Density (g/cm3) | 1.476 |
Minimum Density (g/cm3) | 1.256 |
Particle Density (g/cm3) | 2.66 |
Mean Diameter (mm) | 0.870 |
Mg2+/Ca2+ Ratio | Curing Days | Temp (°C) | Injection Interval (h) | Level of Saturation |
---|---|---|---|---|
0.00 | 14 | 30 | 48 | Saturated |
0.11 | 14 | 30 | 48 | Saturated |
0.25 | 14 | 30 | 48 | Saturated |
0.43 | 14 | 30 | 48 | Saturated |
0.67 | 14 | 30 | 48 | Saturated |
1.00 | 14 | 30 | 48 | Saturated |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imran, M.A.; Nakashima, K.; Kawasaki, S. Bio-Mediated Soil Improvement Using Plant Derived Enzyme in Addition to Magnesium Ion. Crystals 2021, 11, 516. https://doi.org/10.3390/cryst11050516
Imran MA, Nakashima K, Kawasaki S. Bio-Mediated Soil Improvement Using Plant Derived Enzyme in Addition to Magnesium Ion. Crystals. 2021; 11(5):516. https://doi.org/10.3390/cryst11050516
Chicago/Turabian StyleImran, Md Al, Kazunori Nakashima, and Satoru Kawasaki. 2021. "Bio-Mediated Soil Improvement Using Plant Derived Enzyme in Addition to Magnesium Ion" Crystals 11, no. 5: 516. https://doi.org/10.3390/cryst11050516
APA StyleImran, M. A., Nakashima, K., & Kawasaki, S. (2021). Bio-Mediated Soil Improvement Using Plant Derived Enzyme in Addition to Magnesium Ion. Crystals, 11(5), 516. https://doi.org/10.3390/cryst11050516