ZnO Nano-Rod Arrays Synthesized with Exposed {0001} Facets and the Investigation of Photocatalytic Activity
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of ZnO Nano-Rod Arrays
2.3. Characterization
2.4. Photocatalytic Activity
2.5. Photoelectrochemical Measurements
3. Results and Discussion
3.1. Morphology and Structure
3.2. The Growth Mechanism of ZnO Nano-Rod Arrays
3.3. N2 Adsorption and Desorption
3.4. Optical Research of ZnO Nano-Rod Arrays
3.5. The Transient Photocurrent Response and EIS Nyquist Plots
3.6. The Photocatalytic Activity of ZnO Nano-Rod Arrays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wen, J.; Shi, E.W.; Zhong, W.Z.; Yin, Z.W. Growth mechanism and growth habit of oxide crystals. J. Cryst. Growth 1999, 203, 186–196. [Google Scholar]
- Xia, Y.; Wang, J.; Chen, R.S.; Zhou, D.L.; Xiang, L. A Review on the Fabrication of Hierarchical ZnO Nanostructures for Photocatalysis Application. Crystals 2016, 6, 148. [Google Scholar] [CrossRef]
- Zhang, F.; Li, Y.H.; Qi, M.Y.; Tang, Z.R.; Xu, Y.J. Boosting the activity and stability of Ag-Cu2O/ZnO nanorods for photocatalytic CO2 reduction. Appl. Catal. B Environ. 2019, 268, 118380. [Google Scholar] [CrossRef]
- Nandi, P.; Das, D. Photocatalytic degradation of rhodamine-B dye by stable ZnO nanostructures with different calcination temperature induced defects. Appl. Surf. Sci. 2018, 465, 546–556. [Google Scholar] [CrossRef]
- Guo, Q.; Fu, L.; Yan, T.; Tian, W.; Wang, X. Improved photocatalytic activity of porous ZnO nanosheets by thermal deposition graphene-like g-C3N4 for CO2 reduction with H2O vapor. Appl. Surf. Sci. 2019, 509, 144773. [Google Scholar] [CrossRef]
- Chen, Z.L.; Luo, Y.Y.; Huang, C.X.; Shen, X.T. In situ assembly of ZnO/graphene oxide on synthetic molecular receptors: Towards selective photoreduction of Cr(VI) via interfacial synergistic catalysis. Chem. Eng. J. 2021, 414, 128914. [Google Scholar] [CrossRef]
- Dodd, A.C.; Mckinley, A.J.; Saunders, M.; Tsuzuki, T. Effect of particle size on the photocatalytic activity of nanoparticulate zinc oxide. J. Nanopart. Res. 2006, 8, 43–51. [Google Scholar] [CrossRef]
- Rezapour, M.; Talebian, N. Comparision of structural, optical properties and photocatalytic activity of ZnO with different morphologies: Effect of synthesis methods and reaction media. Mater. Chem. Phys. 2011, 129, 249–255. [Google Scholar] [CrossRef]
- Wen, B.M.; Huang, Y.Z.; Boland, J.J. Controllable growth of ZnO nanostructures by a simple solvothermal process. J. Phys. Chem. C 2008, 112, 106–111. [Google Scholar] [CrossRef]
- Talebian, N.; Amininezhad, S.M.; Doudi, M. Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. J. Photochem. Photobiol. B 2013, 120, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.L.; Huang, P.; Wang, B.C.; Wang, C.W.; Wang, W.G.; Wang, T.L.; Chen, S.F.; Lv, R.L.; Qin, Y.H.; Ma, J.Y. Solvothermal synthesis of ZnO with different morphologies in dimethylacetamide media. Ceram. Int. 2016, 42, 2250–2256. [Google Scholar] [CrossRef]
- Gao, H.Y.; Yan, F.W.; Zhang, Y.; Li, J.M.; Zeng, Y.P. Synthesis and characterization of ZnO nanoflowers grown on AIN film by solution deposition. Chin. Phys. Lett. 2008, 25, 640–643. [Google Scholar]
- Pimentel, A.; Nunes, D.; Duarte, P.; Rodrigues, J.; Costa, F.M.; Monteriro, T.; Martins, R.; Fortunato, E. Synthesis of long ZnO nanorods under microwave irradiation or conventional heating. J. Phys. Chem. C 2014, 118, 14629–14639. [Google Scholar] [CrossRef]
- Pascariu, P.; Olaru, N.; Rotaru, A.; Airinei, A. Innovative low-cost carbon/ZnO hybrid materials with enhanced photocatalytic activity towards organic pollutant dyes removal. Nanomaterials 2020, 10, 1873. [Google Scholar] [CrossRef]
- Luo, S.R.; Chen, R.S.; Xiang, L.; Wang, J. Hydrothermal synthesis of (001) facet highly exposed ZnO plates: A new insight into the effect of citrate. Crystals 2019, 9, 552. [Google Scholar] [CrossRef] [Green Version]
- Wojnarowicz, J.; Chudoba, T.; Lojkowski, W. A review of microwave synthesis of zinc oxide nanomaterials: Reactants, process parameters and morphoslogies. Nanomaterials 2020, 10, 1086. [Google Scholar] [CrossRef] [PubMed]
- Wahab, R.; Ansari, S.G.; Kim, Y.S.; Song, M.W.; Shin, H.S. The role of pH variation on the growth of zinc oxide nanostructures. Appl. Surf. Sci. 2009, 255, 4891–4896. [Google Scholar] [CrossRef]
- Luo, S.; Liu, C.W.; Li, W.; Liu, S.X.; He, S.B. Self-assembly of single-crystal ZnO nanorod arrays on flexible activated carbon fibers substrates and the superior photocatalytic degradation activity. Appl. Surf. Sci. 2020, 513, 145878. [Google Scholar] [CrossRef]
- Pimentel, A.; Rodrigues, I.; Duarte, P.; Nunes, D.; Costa, F.M.; Montetiro, T.; Martins, R.; Fortunato, E. Effect of solvents on ZnO nanostructures synthesized by solvothermal method assisted by microwave radiation: A photocatalytic study. J. Mater. Sci. 2015, 50, 5777–5787. [Google Scholar] [CrossRef]
- Demyanets, L.N.; Li, L.E.; Uvarova, T.F. Zinc oxide: Hydrothermal growth of nano and bulk crystals and their luminescent properties. J. Mater. Sci. 2006, 41, 1439–1444. [Google Scholar] [CrossRef]
- Gomez, J.L.; Tigli, O. Zinc oxide nanostructures: From growth to application. J. Mater. Sci. 2013, 48, 612–624. [Google Scholar] [CrossRef]
- Xia, W.; Wang, Y.; Wang, Q.; Yan, Y.Z.; Jiang, Y.J. Tubular acceptor-rich ZnO hierarchical heterostructure as an efficient photocatalyst for organic degradation. Appl. Surf. Sci. 2020, 506, 145008. [Google Scholar] [CrossRef]
- Lu, H.; Deng, K.M.; Shi, Z.W.; Liu, Q.; Zhu, G.B.; Fan, H.T.; Li, L. Novel ZnO microflowers on nanorod arrays: Local dissolution-driven growth and enhanced light harvesting in dye-sensitized solar cells. Nanoscale Res. Lett. 2014, 9, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Alenezi, M.R.; Alshammari, A.S.; Jayawardena, K.; Beliatis, M.J.; Henley, S.J.; Silva, S.R.P. Role of the exposed polar facets in the performance of thermally and UV activated ZnO nanostructured gas sensors. J. Phys. Chem. C 2013, 117, 17850–17858. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Xie, Z.X.; Jiang, Z.Y.; Kuang, Q.; Zhang, S.H.; Xu, T.; Huang, R.B.; Zheng, L.S. Formation of ZnO hexagonal micropyramids: A successful control of the exposed polar surfaces with the assistance of anionic liquid. Chem. Commun. 2005, 28, 5572–5574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarkar, D.; Tikku, S.; Thapar, V.; Srinivasa, R.S.; Khilar, K.C. Formation of zinc oxide nanoparticles of different shapes in water in-oil microemulsion. Colloids Surface A 2011, 381, 123–129. [Google Scholar] [CrossRef]
- Trukhanov, A.V.; Darwish, K.A.; Salem, M.M.; Hemeda, O.M.; Trukhanov, S.V. Impact of the heat treatment conditions on crystal structure, morphology and magnetic properties evolution in BaM nanohexaferrites. J. Alloys Compd. 2021, 866, 158961. [Google Scholar] [CrossRef]
- Zubar, T.I.; Fedosyuk, V.M.; Trukhanov, A.V.; Kovaleva, N.N.; Tishkevich, D.I. Control of Growth Mechanism of Electrodeposited Nanocrystalline NiFe Films. J. Electrochem. Soc. 2019, 166, D173–D180. [Google Scholar] [CrossRef]
- Gomez, H.; Dalchiele, E.A.; Martti, R.E. Morphological and structural control of electrodeposited ZnO thin films and its influence on the photocatalytic degradation of methyl orange dye. Int. J. Electrochem. Sci. 2014, 9, 534–548. [Google Scholar]
- Mo, M.S.; Yu, J.C.; Zhang, L.Z.; Li, S.A. Self-assembly of ZnO nanorods and nanosheets into hollow microhemispheres and microspheres. Adv. Mater. 2005, 17, 756–760. [Google Scholar] [CrossRef]
- Wu, C.; Qiao, X.; Chen, J.; Wang, H.; Tan, F.; Li, S. A novel chemical route to prepare ZnO nanoparticles. Mater. Lett. 2006, 60, 1828–1832. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Wang, Y.X.; Shen, L.H.; Guo, H.; Wang, G.C.; Li, Y.; Zhou, S.F.; Zhang, Q.Q.; Jiang, Q. Synthesis of dumbbell-like ZnO microcrystals via a simple solution route. Nanoscale Res. Lett. 2012, 7, 507–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Zeng, K.L. A novel flower-like dual Z-scheme BiSI/Bi2WO6/g-C3N4 photocatalyst has excellent photocatalytic activity for the degradation of organic pollutants under visible light. Diam. Relat. Mater. 2021, 115, 108343. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Li, W.C.; Yan, Y.T.; Wang, W.; Ren, Y.P.; Li, X.W. Synthesis of highly porous g-C3N4 nanotubes for efficient photocatalytic degradation of sulfamethoxazole. Mater. Today Commun. 2021, 27, 102288. [Google Scholar] [CrossRef]
- Kusiak-Nejman, E.; Wojnarowicz, J.; Morawski, A.W.; Narkiewicz, U.; Sobczak, K.; Gierlotka, S.; Lojkowski, W. Size-dependent effects of ZnO nanoparticles on the photocatalytic degradation of phenol in a water solution. Appl. Surf. Sci. 2021, 541, 148416. [Google Scholar] [CrossRef]
- Yang, X.Y.; Liu, H.X.; Li, T.D.; Huang, B.B.; Hu, W.; Jiang, Z.Y.; Chen, J.B.; Niu, Q.F. Preparation of flower-like ZnO@ZnS core-shell structure enhances photocatalytic hydrogen production. Int. J. Hydrog. Energy 2020, 45, 26967–26978. [Google Scholar] [CrossRef]
- Li, X.; He, W.M.; Li, C.H.; Song, B.; Liu, S.W. Synergetic surface modulation of ZnO/Pt@ZIF-8 hybrid nanorods for enhanced photocatalytic CO2 valorization. Appl. Catal. B Environ. 2021, 287, 119934. [Google Scholar] [CrossRef]
- Liu, Y.J.; Huang, D.; Liu, H.X.; Li, T.D.; Wang, J.G. ZnO tetrakaidecahedrons with coexposed {001}, {101}, and {100} facets: Shape-selective synthesis and enhancing photocatalytic performance. Cryst. Growth Des. 2019, 19, 2758–2764. [Google Scholar] [CrossRef]
- Hao, X.Q.; Zhou, J.; Cui, Z.W.; Wang, Y.C.; Wang, Y.; Zou, Z.G. Zn-vacancy mediated electron-hole separation in ZnS/g-C3N4 heterojunction for efficient visible-light photocatalytic hydrogen production. Appl. Catal. B Environ. 2018, 229, 41–51. [Google Scholar] [CrossRef]
- Chen, Z.; Fan, T.T.; Yu, X.; Wu, Q.L.; Zhu, Q.H.; Zhang, L.Z.; Yi, X.D. Gradual carbon doping of graphitic carbon nitride towards metal-free visible light photocatalytic hydrogen evolution. J. Mater. Chem. A 2018, 6, 15310–15319. [Google Scholar] [CrossRef]
- Bai, S.L.; Liu, X.; Li, D.Q.; Chen, S.; Luo, R.X.; Chen, A.F. Synthesis of ZnO nanorods and its application in NO2 sensors. Sens. Actuat. B Chem. 2011, 153, 110–116. [Google Scholar] [CrossRef]
- Liang, H.Q.; Tai, X.M.; Du, Z.P.; Yin, Y.J. Enhanced photocatalytic activity of ZnO sensitized by carbon quantum dots and application in phenol wastewater. Opt. Mater. 2020, 100, 109674. [Google Scholar] [CrossRef]
- Ren, C.J.; Li, W.J.; Li, H.D.; Ma, X.H.; Li, X.Y.; Fan, H.X.; Chen, Y.Y. Fabrication of chrysanthemum-like CdSe/bulk WC: A novel Schottky-junction photocatalyst for improving photocatalytic hydrogen production. J. Alloys Compd. 2021, 159691. [Google Scholar] [CrossRef]
Sample | Unit Cell Parameter a, A | Unit Cell Parameter c, A | Microstrain, % | Grain Size, A |
---|---|---|---|---|
0.8 g CTAB | 3.2421 | 5.2010 | 0.161 | 990 |
1.0 g CTAB | 3.2484 | 5.2058 | 0.075 | 675 |
1.2 g CTAB | 3.2464 | 5.2043 | 0.089 | 651 |
1.4 g CTAB | 3.2476 | 5.2052 | 0.072 | 667 |
Sample | BET Surface Area (m2/g) | Pore Volume (cm3/g) |
---|---|---|
0.0 g CTAB | 31.9 | 0.068 |
0.8 g CTAB | 16.2 | 0.034 |
1.0 g CTAB | 16.6 | 0.037 |
1.2 g CTAB | 26.4 | 0.048 |
1.4 g CTAB | 14.8 | 0.040 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Tian, J.; Guo, Y.; Teng, M.; Liu, H.; Li, T.; Lv, P.; Wang, X. ZnO Nano-Rod Arrays Synthesized with Exposed {0001} Facets and the Investigation of Photocatalytic Activity. Crystals 2021, 11, 522. https://doi.org/10.3390/cryst11050522
Yang X, Tian J, Guo Y, Teng M, Liu H, Li T, Lv P, Wang X. ZnO Nano-Rod Arrays Synthesized with Exposed {0001} Facets and the Investigation of Photocatalytic Activity. Crystals. 2021; 11(5):522. https://doi.org/10.3390/cryst11050522
Chicago/Turabian StyleYang, Xinying, Jin Tian, Yang Guo, Mengyuan Teng, Haixia Liu, Tianduo Li, Pingli Lv, and Xuping Wang. 2021. "ZnO Nano-Rod Arrays Synthesized with Exposed {0001} Facets and the Investigation of Photocatalytic Activity" Crystals 11, no. 5: 522. https://doi.org/10.3390/cryst11050522
APA StyleYang, X., Tian, J., Guo, Y., Teng, M., Liu, H., Li, T., Lv, P., & Wang, X. (2021). ZnO Nano-Rod Arrays Synthesized with Exposed {0001} Facets and the Investigation of Photocatalytic Activity. Crystals, 11(5), 522. https://doi.org/10.3390/cryst11050522