Interplay between Vortex Dynamics and Superconducting Gap Structure in Layered Organic Superconductors
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Discussion
3.1. κ-(ET)2Cu(NCS)2
3.1.1. In-Plane Anisotropy of Upper Critical Field in k-(ET)2Cu(NCS)2
3.1.2. In-Plane Anisotropy of Vortex Dynamics in k-(ET)2Cu(NCS)2
3.2. β″-(ET)2SF5CH2CF2SO3
3.2.1. Anisotropy of Upper Critical Field in β″-(ET)2SF5CH2CF2SO3
3.2.2. In-Plane Anisotropy of Vortex Dynamics in β″-(ET)2SF5CH2CF2SO3
3.3. λ-(BETS)2GaCl4
In-Plane Anisotropy of Vortex Dynamics in λ-(BETS)2GaCl4
4. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ardavan, A.; Brown, S.; Kagoshima, S.; Kanoda, K.; Kuroki, K.; Mori, H.; Ogata, M.; Uji, S.; Wosnitza, J. Recent Topics of Organic Superconductors. J. Phys. Soc. Jpn. 2012, 81, 011012. [Google Scholar] [CrossRef]
- Lang, M.; Muller, J. Organic Superconductors. In Superconductivity; Bennemann, K.H., Ketterson, J.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume II, pp. 1155–1223. [Google Scholar]
- Kanoda, K. Electron correlation, metal-insulator transition and superconductivity in quasi-2D organic systems, (ET)2X. Physica C 1997, 282–287, 299–302. [Google Scholar] [CrossRef]
- Sasaki, T.; Yoneyama, N.; Matsuyama, A.; Kobayashi, N. Magnetic and electronic phase diagram and superconductivity in the organic superconductors κ-(ET)2X. Phys. Rev. B 2002, 65, 060505. [Google Scholar] [CrossRef] [Green Version]
- Clay, R.T.; Li, H.; Mazumdar, S. Absence of Superconductivity in the Half-Filled Band Hubbard Model on the Anisotropic Triangular Lattice. Phys. Rev. Lett. 2008, 101, 166403. [Google Scholar] [CrossRef] [PubMed]
- Dayal, S.; Clay, R.T.; Li, H.; Mazumdar, S. Paired electron crystal: Order from frustration in the quarter-filled band. Phys. Rev. B 2011, 83, 245106. [Google Scholar] [CrossRef] [Green Version]
- Dayal, S.; Clay, R.T.; Mazumdar, S. Absence of long-range superconducting correlations in the frustrated half-filled-band Hubbard model. Phys. Rev. B 2012, 85, 165141. [Google Scholar] [CrossRef] [Green Version]
- Qin, M.; Chung, C.-M.; Shi, H.; Vitali, E.; Hubig, C.; Schollwöck, U.; White, S.R.; Zhang, S. Absence of Superconductivity in the Pure Two-Dimensional Hubbard Model. Phys. Rev. X 2020, 10, 031016. [Google Scholar] [CrossRef]
- Mayaffre, H.; Wzietek, P.; Jérome, D.; Batail, P. Superconducting State of κ-(ET)2Cu[N(CN)2]Br Studied by 13C NMR: Evidence for Vortex-Core-Induced Nuclear Relaxation and Unconventional Pairing. Phys. Rev. Lett. 1995, 75, 4122–4125. [Google Scholar] [CrossRef] [PubMed]
- Nakazawa, Y.; Kanoda, K. Low-temperature specific heat of κ-(BEDT-TTF)2Cu[N(CN)2]Br in the superconducting state. Phys. Rev. B 1986, 55, R8670–R8673. [Google Scholar] [CrossRef]
- Taylor, O.J.; Carrington, A.; Schlueter, J.A. Specific-Heat Measurements of the Gap Structure of the Organic Superconductors κ-(ET)2Cu[N(CN)2]Br and κ-(ET)2Cu(NCS)2. Phys. Rev. Lett. 2007, 99, 057001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schrama, J.M.; Rzepniewski, E.; Edwards, R.S.; Singleton, J.; Ardvan, A.; Kurmoo, M.; Day, P. Millimeter-Wave Magneto-optical Determination of the Anisotropy of the Superconducting Order Parameter in the Molecular Superconductor κ-(BEDT-TTF)2Cu(NCS)2. Phys. Rev. Lett. 1999, 83, 3041–3044. [Google Scholar] [CrossRef]
- Arai, T.; Ichimura, K.; Nomura, K.; Takasaki, S.; Yamada, J.; Nakatsuji, S.; Anzai, H. Tunneling spectroscopy on the organic superconductor κ-(BEDT-TTF)2Cu(NCS)2 using STM. Phys. Rev. B 2001, 63, 104518. [Google Scholar] [CrossRef] [Green Version]
- Izawa, K.; Yamaguchi, H.; Sasaki, T.; Matsuda, Y. Superconducting Gap Structure of κ-(BEDT-TTF)2Cu(NCS)2 Probed by Thermal Conductivity Tensor. Phys. Rev. Lett. 2001, 88, 027002. [Google Scholar] [CrossRef] [Green Version]
- Malone, L.; Taylor, O.J.; Schlueter, J.A.; Carrington, A. Location of gap nodes in the organic superconductors κ-(ET)2Cu(NCS)2 and κ-(ET)2Cu[N(CN)2]Br determined by magnetocalorimetry. Phys. Rev. B 2010, 82, 014522. [Google Scholar] [CrossRef] [Green Version]
- Sigrist, M.; Ueda, K. Phenomenological theory of unconventional superconductivity. Rev. Mod. Phys. 1991, 63, 239–311. [Google Scholar] [CrossRef]
- Volovik, G.E. Superconductivity with lines of gap nodes: Density of states in the vortex. JETP Lett. 1993, 58, 469–473. [Google Scholar]
- Vekhter, I.; Hirschfeld, P.J.; Carbotte, J.P.; Nicol, E.J. Anisotropic thermodynamics of d-wave superconductors in the vortex state. Phys. Rev. B 1999, 59, R9023–R9026. [Google Scholar] [CrossRef] [Green Version]
- Deguchi, K.; Mao, Z.Q.; Yaguchi, H.; Maeno, Y. Gap Structure of the Spin-Triplet Superconductor Sr2RuO4 Determined from the Field-Orientation Dependence of the Specific Heat. Phys. Rev. Lett. 2004, 92, 047002. [Google Scholar] [CrossRef] [Green Version]
- Higashi, Y.; Nagai, Y.; Machida, M.; Hayashi, N. Field-angle dependence of the quasiparticle scattering inside a vortex core in unconventional superconductors. Physica C 2011, 471, 828–830. [Google Scholar] [CrossRef] [Green Version]
- Higashi, Y.; Nagai, Y.; Machida, M.; Hayashi, N. Effect of uniaxially anisotropic Fermi surface on the quasiparticle scattering inside a vortex core in unconventional superconductors. Physica C 2013, 484, 97–99. [Google Scholar] [CrossRef] [Green Version]
- Higashi, Y.; Nagai, Y.; Machida, M.; Hayashi, N. Field-angle resolved flux-flow resistivity as a phase-sensitive probe of unconventional Cooper pairing. Phys. Rev. B 2013, 88, 224511. [Google Scholar] [CrossRef] [Green Version]
- Clem, J.R.; Coffey, M.W. Viscous flux motion in a Josephson-coupled layer model of high-Tc superconductors. Phys. Rev. B 1990, 42, 6209–6216. [Google Scholar] [CrossRef]
- Koshelev, A.E. Role of in-plane dissipation in dynamics of a Josephson vortex lattice in high-temperature superconductors. Phys. Rev. B 2000, 62, R3616–R3619. [Google Scholar] [CrossRef] [Green Version]
- Yasuzuka, S.; Saito, K.; Uji, S.; Kimata, M.; Satsukawa, H.; Terashima, T.; Yamada, J.-I. Anisotropic Josephson-Vortex Dynamics in Layered Organic Superconductor with d-Wave Pairing Symmetry. J. Phys. Soc. Jpn. 2013, 82, 064716. [Google Scholar] [CrossRef]
- Yasuzuka, S.; Uji, S.; Terashima, T.; Tsuchiya, S.; Sugii, K.; Zhou, B.; Kobayashi, A.; Kobayashi, H. In-Plane Anisotropy of Flux-Flow Resistivity in Layered Organic Superconductor λ-(BETS)2GaCl4. J. Phys. Soc. Jpn. 2014, 83, 013705. [Google Scholar] [CrossRef]
- Yasuzuka, S.; Uji, S.; Terashima, T.; Sugii, K.; Isono, T.; Iida, Y.; Schlueter, J.A. In-Plane Anisotropy of Upper Critical Field and Flux-Flow Resistivity in Layered Organic Superconductor β″-(ET)2SF5CH2CF2SO3. J. Phys. Soc. Jpn. 2015, 84, 094709. [Google Scholar] [CrossRef]
- Müller, J.; Lang, M.; Steglich, F.; Schlueter, J.A.; Kini, A.M.; Geiser, U.; Mohtasham, J.; Winter, R.W.; Gard, G.L.; Sasaki, T.; et al. Comparative thermal-expansion study of β”-(ET)2SF5CH2CF2SO3 and κ-(ET)2Cu(NCS)2: Uniaxial pressure coefficients of Tc and upper critical fields. Phys. Rev. B 2000, 61, 11739–11744. [Google Scholar] [CrossRef]
- Wanka, S.; Hagel, J.; Beckmann, D.; Wosnitza, J.; Schlueter, J.A.; Williams, J.M.; Nixon, P.G.; Winter, R.W.; Garal, G.L. Specific heat and critical field of the organic superconductor β”-(ET)2SF5CH2CF2SO3. Phys. Rev. B 1997, 57, 3084–3088. [Google Scholar] [CrossRef] [Green Version]
- Prozorov, R.; Giannetta, R.W.; Schlueter, J.A.; Kini, A.M.; Mohtasham, J.; Winter, R.W.; Gard, G.L. Unusual temperature dependence of the London penetration depth in all-organic β”-(ET)2SF5CH2SF2SO3 single crystals. Phys. Rev. B 2001, 63, 052506. [Google Scholar] [CrossRef] [Green Version]
- Mielke, C.; Singleton, J.; Nam, M.-S.; Harrison, N.; Agosta, C.C.; Fravel, B.; Montgomery, L.K. Superconducting properties and Fermi-surface topology of the quasi-two-dimensional organic superconductor λ-(BETS)2GaCl4. J. Phys. Condens. Matter 2001, 13, 8325–8345. [Google Scholar] [CrossRef]
- Sari, D.P.; Naito, R.; Hiraki, K.; Nakano, T.; Hagiwara, M.; Nozue, Y.; Kusakawa, T.; Hori, A.; Watanabe, I.; Ishii, Y. Anisotropy of Lower Critical Field in Organic Layered Superconductor λ-(BETS)2GaCl4. Key Eng. Mater. 2020, 860, 137–141. [Google Scholar] [CrossRef]
- Saito, G.; Yamochi, H.; Nakamura, T.; Komatsu, T.; Ishiguro, T.; Nogami, Y.; Ito, Y.; Mori, H.; Oshima, K.; Nakashima, M.; et al. Overview of organic superconductor κ-(BEDT-TTF)2[Cu(NCS)2] and its related materials. Synth. Met. 1991, 42, 1993–1998. [Google Scholar] [CrossRef]
- Chaparala, M.; Chung, O.H.; Ren, Z.F.; White, M.; Coppens, P.; Wang, J.H.; Hope, A.P.; Naughton, M.J. Vortex-state resistance near parallel orientation in layered superconductors. Phys. Rev. B 1996, 53, 5818. [Google Scholar] [CrossRef] [PubMed]
- Uji, S.; Terashima, T.; Nishimura, M.; Konoike, T.; Enomoto, K.; Cui, H.; Kobayashi, H.; Kobayashi, A.; Tanaka, H.; Tokumoto, M.; et al. Vortex Dynamics and the Fulde-Ferrell-Larkin-Ovchinnikov State in a Magnetic-Field-Induced Organic Superconductor. Phys. Rev. Lett. 2006, 97, 157001. [Google Scholar] [CrossRef]
- Yasuzuka, S.; Uji, S.; Satsukawa, H.; Kimata, M.; Terashima, T.; Koga, H.; Yamamura, Y.; Saito, K.; Akutsu, H.; Yamada, J. Anisotropic Josephson-vortex dynamics in layered organic superconductors. Physica B 2010, 405, S288–S290. [Google Scholar] [CrossRef]
- Feinberg, D.; Villard, C. Intrinsic pinning and lock-in transition of flux lines in layered type-II superconductors. Phys. Rev. Lett. 1990, 65, 919–922. [Google Scholar] [CrossRef] [PubMed]
- Mansky, P.A.; Chaikin, P.M.; Haddon, R.C. Vortex lock-in state in a layered superconductor. Phys. Rev. Lett. 1993, 70, 1323–1326. [Google Scholar] [CrossRef]
- Nam, M.-S.; Symington, J.A.; Singleton, J.; Blundell, S.; Ardavan, A.; Perenboom, J.A.A.J.; Kurmoo, M.; Day, P. Angle dependence of the upper critical field in the layered organic superconductor κ-(BEDT-TTF)2Cu(NCS)2 (BEDT-TTF ≡ bis(ethylene-dithio)tetrathiafulvalene). J. Phys. Condens. Matter. 1999, 11, L477–L484. [Google Scholar] [CrossRef]
- Klemm, R.A.; Luther, A.; Beasley, M.R. Theory of the upper critical field in layered superconductors. Phys. Rev. B 1975, 12, 877–891. [Google Scholar] [CrossRef]
- Schneider, T.; Schmidt, A. Dimensional crossover in the upper critical field of layered superconductors. Phys. Rev. B 1993, 47, 5915–5921. [Google Scholar] [CrossRef]
- Oshima, K.; Urayama, H.; Yamochi, H.; Saito, G. Peculiar Critical Field Behaviour in the Recectly Discovered Ambient Pressure Organic Superconductor (BEDT-TTF)2Cu (NCS)2 (Tc = 10.4 K). J. Phys. Soc. Jpn. 1988, 57, 730–733. [Google Scholar] [CrossRef]
- Takanaka, K.; Kuboya, K. Anisotropy of Upper Critical Field and Pairing Symmetry. Phys. Rev. Lett. 1995, 75, 323–325. [Google Scholar] [CrossRef]
- Yasuzuka, S.; Koga, H.; Yamamura, Y.; Saito, K.; Uji, S.; Terashima, T.; Akutsu, H.; Yamada, J.-I. Dimensional Crossover and Its Interplay with In-Plane Anisotropy of Upper Critical Field in β-(BDA-TTP)2SbF6. J. Phys. Soc. Jpn. 2017, 86, 084704. [Google Scholar] [CrossRef]
- Yasuzuka, S.; Uji, S.; Sugiura, S.; Terashima, T.; Nogami, Y.; Ichimura, K.; Tanda, S. Highly Isotropic In-plane Upper Critical Field in the Anisotropic s-Wave Superconductor 2H-NbSe2. J. Supercond. Nov. Magn. 2020, 33, 953–958. [Google Scholar] [CrossRef]
- Vorontsov, A.B.; Vekhter, I. Unconventional superconductors under a rotating magnetic field. I. Density of states and specific heat. Phys. Rev. B 2007, 75, 224501. [Google Scholar] [CrossRef] [Green Version]
- Vorontsov, A.B.; Vekhter, I. Unconventional superconductors under a rotating magnetic field. II. Thermal transport. Phys. Rev. B 2007, 75, 224502. [Google Scholar] [CrossRef] [Green Version]
- An, K.; Sakakibara, T.; Settai, R.; Onuki, Y.; Hiragi, M.; Ichioka, M.; Machida, K. Sign Reversal of Field-Angle Resolved Heat Capacity Oscillations in a Heavy Fermion Superconductor CeCoIn5 and dx2−y2 Pairing Symmetry. Phys. Rev. Lett. 2010, 104, 037002. [Google Scholar] [CrossRef] [Green Version]
- Geiser, U.; Schlueter, J.A.; Wang, H.H.; Kini, A.M.; Williams, J.M.; Sche, P.P.; Zakowicz, H.I.; VanZile, M.L.; Dudek, J.D.; Nixon, P.G.; et al. Superconductivity at 5.2 K in an Electron Donor Radical Salt of Bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) with the Novel Polyfluorinated Organic Anion SF5CH2CF2SO3−. J. Am. Chem. Soc. 1996, 118, 9996–9997. [Google Scholar] [CrossRef]
- Beckmann, D.; Wanka, S.; Wosnitza, J.; Schlueter, J.A.; Williams, J.M.; Nixon, P.G.; Winter, R.W.; Gard, G.L.; Ren, J.; Whangbo, M.-H. Characterization of the Fermi surface of the organic superconductor β”-(ET)2SF5CH2CF2SO3 by measurements of Shubnikov-de Haas and angle-dependent magnetoresistance oscillations and by electronic band-structure calculations. Eur. Phys. J. B 1998, 1, 295–300. [Google Scholar] [CrossRef]
- Brooks, J.S.; Williams, V.; Choi, E.S.; Graf, D.; Tokumoto, M.; Uji, S.; Zou, F.; Wosnitza, J.; Schlueter, J.A.; Davis, H.; et al. Fermiology and superconductivity at high magnetic fields in a completely organic cation radical salt. New J. Phys. 2006, 8, 255. [Google Scholar] [CrossRef]
- Wosnitza, J.; Hagel, J.; Qualls, J.S.; Brooks, J.S.; Balthes, E.; Schweitaer, D.; Schlueter, J.A.; Geiser, U.; Mohtasham, J.; Winter, R.W.; et al. Coherent versus incoherent interlayer transport in layered metals. Phys. Rev. B 2000, 65, R180506. [Google Scholar] [CrossRef] [Green Version]
- Hagel, J.; Wosnitza, J.; Pfleiderer, C.; Schlueter, J.A.; Mohtasham, J.; Gard, G.L. Pressure-induced insulating state in an organic superconductor. Phys. Rev. B 2003, 68, 104504. [Google Scholar] [CrossRef] [Green Version]
- Calandra, M.; Merino, J.; Mckenzie, R.H. Metal-insulator transition and charge ordering in the extended Hubbard model at one-quarter filling. Phys. Rev. B 2002, 66, 195102. [Google Scholar] [CrossRef] [Green Version]
- Merino, J.; Mckenzie, R.H. Superconductivity Mediated by Charge Fluctuations in Layered Molecular Crystals. Phys. Rev. Lett. 2001, 87, 237002. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, H.; Udagawa, T.; Tomita, H.; Bun, K.; Naito, T.; Kobayashi, A. A New Organic Superconductor, λ-(BEDT-TSF)2GaCl4. Chem. Lett. 1993, 22, 1559–1562. [Google Scholar] [CrossRef]
- Tanatar, M.A.; Ishiguro, T.; Tanaka, H.; Kobayashi, H. Magnetic field–temperature phase diagram of the quasi-two-dimensional organic superconductor λ-(BETS)2GaCl4 studied via thermal conductivity. Phys. Rev. B 2002, 66, 134503. [Google Scholar] [CrossRef] [Green Version]
- Uji, S.; Kodama, K.; Sugii, K.; Terashima, T.; Yamaguchi, T.; Kurita, N.; Tsuchiya, S.; Konoike, T.; Kimata, M.; Kobayashi, A.; et al. Vortex Dynamics and Diamagnetic Torque Signals in Two Dimensional Organic Superconductor λ-(BETS)2GaCl4. J. Phys. Soc. Jpn. 2015, 84, 104709. [Google Scholar] [CrossRef]
- Uji, S.; Shinagawa, H.; Terashima, T.; Yakabe, T.; Terai, Y.; Tokumoto, M.; Kobayashi, A.; Tanaka, H.; Kobayashi, H. Magnetic-field-induced superconductivity in a two-dimensional organic conductor. Nature 2001, 410, 908–910. [Google Scholar] [CrossRef]
- Goddard, P.A.; Blundell, S.J.; Singleton, J.; McDonald, R.D.; Ardavan, A.; Narduzzo, A.; Schlueter, J.A.; Kini, A.M.; Sasaki, T. Angle-dependent magnetoresistance of the layered organic superconductor κ-ET2Cu(NCS)2: Simulation and experiment. Phys. Rev. B 2004, 69, 174509. [Google Scholar] [CrossRef] [Green Version]
- Clark, K.; Hassanien, A.; Khan, S.; Braun, K.-F.; Tanaka, H.; Hla, S.-W. Superconductivity in just four pairs of (BETS)2GaCl4 molecules. Nat. Nanotechnol. 2010, 5, 261–265. [Google Scholar] [CrossRef]
- Kobayashi, H.; Akutsu, H.; Arai, E.; Tanaka, H.; Kobayashi, A. Electric and magnetic properties and phase diagram of a series of organic superconductors λ−BETS2GaXzY4−z [BETS = bis(ethylenedithiotetraselenafulvalene; X, Y = F, Cl, Br; 0 < z < 2)]. Phys. Rev. B 1997, 56, R8526–R8529. [Google Scholar]
- Tanaka, H.; Kobayashi, A.; Sato, A.; Akutsu, H.; Kobayashi, H. Chemical Control of Electrical Properties and Phase Diagram of a Series of λ-Type BETS Superconductors, λ-(BETS)2GaBrxCl4−x. J. Am. Chem. Soc. 1999, 121, 760–768. [Google Scholar] [CrossRef]
- Mori, H.; Okano, T.; Kamiya, M.; Haemori, M.; Suzuki, H.; Tanaka, S.; Nishio, Y.; Kajita, K.; Moriyama, H. Bandwidth and band filling control in organic conductors. Physica C 2001, 357–360, 103–107. [Google Scholar] [CrossRef]
- Kanoda, K. Metal–Insulator Transition in κ-(ET)2X and (DCNQI)2M: Two Contrasting Manifestation of Electron Correlation. J. Phys. Soc. Jpn. 2006, 75, 051007. [Google Scholar] [CrossRef]
- Kobayashi, T.; Kawamoto, A. Evidence of antiferromagnetic fluctuation in the unconventional superconductor λ-(BETS)2GaCl4 by 13C NMR. Phys. Rev. B 2017, 96, 125115. [Google Scholar] [CrossRef]
- Imajo, S.; Kanda, N.; Yamashita, S.; Akutsu, H.; Nakazawa, Y.; Kumagai, H.; Kobayashi, T.; Kawamoto, A. Thermodynamic Evidence of d-Wave Superconductivity of the Organic Superconductor λ-(BETS)2GaCl4. J. Phys. Soc. Jpn. 2016, 85, 043705. [Google Scholar] [CrossRef]
- Sari, D.P.; Asih, R.; Mohm-Tajudin, S.S.; Adam, N.; Hiraki, K.; Ishii, Y.; Takahashi, T.; Nakano, T.; Nozue, Y.; Sulaiman, S.; et al. μSR Study of Organic Superconductor λ-(BETS)2GaCl4. IOP Conf. Ser. Mater. Sci. Eng. 2017, 196, 012047. [Google Scholar] [CrossRef] [Green Version]
- Aizawa, H.; Koretsune, T.; Kuroki, K.; Seo, H. Electronic Structure Calculation and Superconductivity in λ-(BETS)2GaCl4. J. Phys. Soc. Jpn. 2018, 87, 093701. [Google Scholar] [CrossRef]
- Imajo, S.; Yamashita, S.; Akutsu, H.; Kumagai, H.; Kobayashi, T.; Kawamoto, A.; Nakazawa, Y. Gap Symmetry of the Organic Superconductor λ-(BETS)2GaCl4 Determined by Magnetic-Field-Angle-Resolved Heat Capacity. J. Phys. Soc. Jpn. 2019, 88, 023702. [Google Scholar] [CrossRef]
Properties | Unit | κ-(ET)2Cu(NCS)2 | β”-(ET)2SF5CH2CF2SO3 | λ-(BETS)2GaCl4 |
---|---|---|---|---|
Tc | K | 8.7–10.4 | 5.2 | 5–8 |
Bc1‖ | mT | 0.2 | 0.006 | 5.2 |
Bc1⊥ | mT | 6.5 | 2 | 8.2 |
Bc2‖ | T | 30–35 | 10.4 | 12 |
Bc2⊥ | T | 6 | 1.4 | 3 |
λ‖ | Å | 5100–20,000 | 10,000–20,000 | 1500 |
λ⊥ | μm | 40–200 | 400–800 | |
ξ‖ | Å | 74 | 144 | 105 |
ξ⊥ | Å | 5–9 | 7.9 | 9–14 |
κ‖ | - | 100–200 | 59 | 107 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasuzuka, S. Interplay between Vortex Dynamics and Superconducting Gap Structure in Layered Organic Superconductors. Crystals 2021, 11, 600. https://doi.org/10.3390/cryst11060600
Yasuzuka S. Interplay between Vortex Dynamics and Superconducting Gap Structure in Layered Organic Superconductors. Crystals. 2021; 11(6):600. https://doi.org/10.3390/cryst11060600
Chicago/Turabian StyleYasuzuka, Syuma. 2021. "Interplay between Vortex Dynamics and Superconducting Gap Structure in Layered Organic Superconductors" Crystals 11, no. 6: 600. https://doi.org/10.3390/cryst11060600
APA StyleYasuzuka, S. (2021). Interplay between Vortex Dynamics and Superconducting Gap Structure in Layered Organic Superconductors. Crystals, 11(6), 600. https://doi.org/10.3390/cryst11060600