Electric-Potential-Assisted Crystallisation of L-Isoleucine: A Study of Nucleation Kinetics and Its Associated Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Polythermal Crystallisation Experiment
2.2.2. Isothermal Crystallisation Experiment
2.2.3. Solid-State Characterisation
2.2.4. Computational Technique
3. Results and Discussion
3.1. Polythermal Crystallisation of L-Isoleucine
3.2. Isothermal Crystallisation of L-Isoleucine
3.3. Characterisation of L-Isoleucine Crystals from Polythermal and Isothermal Crystallisation
3.4. Dynamic Simulation for Nucleation Rate Prediction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krishna, R.; Yu, L. Biopharmaceutics Applications in Drug Development; Springer Science & Business Media: New York, NY, USA, 2007. [Google Scholar]
- Nagy, Z.K.; Fevotte, G.; Kramer, H.; Simon, L.L. Recent advances in the monitoring, modelling and control of crystallization systems. Chem. Eng. Res. Des. 2013, 91, 1903–1922. [Google Scholar] [CrossRef]
- Bryant, M.J.; Rosbottom, I.; Bruno, I.J.; Docherty, R.; Edge, C.M.; Hammond, R.B.; Peeling, R.; Pickering, J.; Roberts, K.J.; Maloney, A.G. “Particle Informatics”: Advancing our understanding of particle properties through digital design. Cryst. Growth Des. 2019, 19, 5258–5266. [Google Scholar] [CrossRef]
- Genceli, F.E.; Himawan, C.; Witkamp, G.-J. Inline determination of supersaturation and metastable zone width of MgSO4. 12H2O with conductivity and refractive index measurement techniques. J. Cryst. Growth 2005, 275, e1757–e1762. [Google Scholar] [CrossRef]
- Wang, S.; Feng, M.; Du, H.; Weigand, J.J.; Zhang, Y.; Wang, X. Determination of metastable zone width, induction time and primary nucleation kinetics for cooling crystallization of sodium orthovanadate from NaOH solution. J. Cryst. Growth 2020, 125721. [Google Scholar] [CrossRef]
- Akal, M.M.; Zakaria, M.; Ebrahim, A.; Nassar, M.M. Secondary nucleation rate of sodium chloride under different stirring conditions. J. Cryst. Growth 1986, 78, 528–532. [Google Scholar] [CrossRef]
- Anuar, N.; Daud, W.R.W.; Roberts, K.J.; Kamarudin, S.K.; Tasirin, S.M. An examination of the solution chemistry, nucleation kinetics, crystal morphology, and polymorphic behavior of aqueous phase batch crystallized L-isoleucine at the 250 mL scale size. Cryst. Growth Des. 2009, 9, 2853–2862. [Google Scholar] [CrossRef]
- Kubota, N. A unified interpretation of metastable zone widths and induction times measured for seeded solutions. J. Cryst. Growth 2010, 312, 548–554. [Google Scholar] [CrossRef]
- Yu, J.; Li, A.; Chen, X.; Chen, Y.; Xie, J.; Wu, J.; Ying, H. Experimental Determination of Metastable Zone Width, Induction Period, and Primary Nucleation Kinetics of Cytidine 5′-Monophosphate Disodium Salt in an Ethanol–Aqueous Mixture. J. Chem. Eng. Data 2013, 58, 1244–1248. [Google Scholar] [CrossRef]
- Kongsamai, P.; Wantha, L.; Flood, A.E.; Tangsathitkulchai, C. In-situ measurement of the primary nucleation rate of the metastable polymorph B of L-histidine in antisolvent crystallization. J. Cryst. Growth 2019, 525, 125209. [Google Scholar] [CrossRef]
- Ryu, S.Y.; Oh, I.H.; Cho, S.J.; Kim, S.; Song, H.K. Enhancing Protein Crystallization under a Magnetic Field. Crystals 2020, 10, 821. [Google Scholar] [CrossRef]
- Kim, H.N.; Suslick, K.S. The effects of ultrasound on crystals: Sonocrystallization and sonofragmentation. Crystals 2018, 8, 280. [Google Scholar] [CrossRef] [Green Version]
- Hammadi, Z.; Veesler, S. New approaches on crystallization under electric fields. Prog. Biophys. Mol. Biol. 2009, 101, 38–44. [Google Scholar] [CrossRef]
- Nanev, C.N. Recent insights into the crystallization process; Protein crystal nucleation and growth peculiarities; Processes in the Presence of Electric Fields. Crystals 2017, 7, 310. [Google Scholar] [CrossRef] [Green Version]
- Nanev, C.N.; Penkova, A. Nucleation of lysozyme crystals under external electric and ultrasonic fields. J. Cryst. Growth 2001, 232, 285–293. [Google Scholar] [CrossRef]
- Amaro-Gahete, J.; Klee, R.; Esquivel, D.; Ruiz, J.R.; Jimenez-Sanchidrian, C.; Romero-Salguero, F.J. Fast ultrasound-assisted synthesis of highly crystalline MIL-88A particles and their application as ethylene adsorbents. Ultrason. Sonochem. 2019, 50, 59–66. [Google Scholar] [CrossRef]
- Pan, W.; Xu, H.; Zhang, R.; Xu, J.; Tsukamoto, K.; Han, J.; Li, A. The influence of low frequency of external electric field on nucleation enhancement of hen egg-white lysozyme (HEWL). J. Cryst. Growth 2015, 428, 35–39. [Google Scholar] [CrossRef]
- Koizumi, H.; Fujiwara, K.; Uda, S. Control of nucleation rate for tetragonal hen-egg white lysozyme crystals by application of an electric field with variable frequencies. Cryst. Growth Des. 2009, 9, 2420–2424. [Google Scholar] [CrossRef]
- Dhanasekaran, R.; Ramasamy, P. Two-dimensional nucleation in the presence of an electric field. J. Cryst. Growth 1986, 79, 993–996. [Google Scholar] [CrossRef]
- Hong, B.K.; Jo, W.H.; Hwang, I.S. The effect of electric field on the crystallization of polyamide-6, 6 by rheological measurement. Polymer 1996, 37, 4183–4185. [Google Scholar] [CrossRef]
- Jung, D.H.; Yang, J.H.; Jhon, M.S. The effect of an external electric field on the structure of liquid water using molecular dynamics simulations. Chem. Phys. 1999, 244, 331–337. [Google Scholar] [CrossRef]
- Koizumi, H.; Tomita, Y.; Uda, S.; Fujiwara, K.; Nozawa, J. Nucleation rate enhancement of porcine insulin by application of an external AC electric field. J. Cryst. Growth 2012, 352, 155–157. [Google Scholar] [CrossRef]
- Tomita, Y.; Koizumi, H.; Uda, S.; Fujiwara, K.; Nozawa, J. Control of Gibbs free energy relationship between hen egg white lysozyme polymorphs under application of an external alternating current electric field. J. Appl. Crystallogr. 2012, 45, 207–212. [Google Scholar] [CrossRef]
- Anuar, N.; Wan Mohamed Daid, W.N.A.; Khalid, S.A.; Syed Draman, S.F.; Sheikh Abdullah, S.R. Prediction of Interaction of Citric Acid Modified Cellulose with Water Region Using Molecular Modelling Technique. Key Eng. Mater. 2019, 797, 118–126. [Google Scholar] [CrossRef]
- Rosbottom, I.; Roberts, K.; Docherty, R. The solid state, surface and morphological properties of p-aminobenzoic acid in terms of the strength and directionality of its intermolecular synthons. CrystEngComm 2015, 17, 5768–5788. [Google Scholar] [CrossRef] [Green Version]
- Rosbottom, I.; Toroz, D.; Hammond, R.B.; Roberts, K.J. Conformational and structural stability of the single molecule and hydrogen bonded clusters of para aminobenzoic acid in the gas and solution phases. CrystEngComm 2018, 20, 7543–7555. [Google Scholar] [CrossRef] [Green Version]
- Yusop, S.N.a.; Anuar, N.; Md Azmi, N.S.; Abu Bakar, N.H. Molecular dynamic investigation on the dissolution behaviour of carbamazepine form III in ethanol solution. Key Eng. Mater. 2019, 797, 149–157. [Google Scholar] [CrossRef]
- Anuar, N.; Pauzi, N.; Ain Yusop, S.; Azmi, N.; Rahim, S.; Othman, M. Prediction of carbamazepine-succinic acid co-crystal dissolution in ethanolic solution using a computational molecular dynamic simulation technique. Int. J. Eng. Technol. (UAE) 2018, 7, 122–128. [Google Scholar]
- Anwar, J.; Boateng, P.K. Computer simulation of crystallization from solution. J. Am. Chem. Soc. 1998, 120, 9600–9604. [Google Scholar] [CrossRef]
- Othman, M.F.; Anuar, N.; Yusop, S.N.a.; Md Azmi, N.S.; Abd Samad, N.A. Morphology prediction and dissolution behavior of α-succinic acid in ethanol solution using molecular dynamic simulation. Key Eng. Mater. 2019, 797, 139–148. [Google Scholar] [CrossRef]
- Shim, H.-M.; Kim, J.-K.; Kim, H.-S.; Koo, K.-K. Molecular dynamics simulation on nucleation of ammonium perchlorate from an aqueous solution. Cryst. Growth Des. 2014, 14, 5897–5903. [Google Scholar] [CrossRef]
- Gavezzotti, A. Molecular aggregation of acetic acid in a carbon tetrachloride solution: A molecular dynamics study with a view to crystal nucleation. Chem. A Eur. J. 1999, 5, 567–576. [Google Scholar] [CrossRef]
- Cheong, D.W.; Boon, Y.D. Comparative study of force fields for molecular dynamics simulations of α-glycine crystal growth from solution. Cryst. Growth Des. 2010, 10, 5146–5158. [Google Scholar] [CrossRef]
- Yuhara, D.; Barnes, B.C.; Suh, D.; Knott, B.C.; Beckham, G.T.; Yasuoka, K.; Wu, D.T.; Sum, A.K. Nucleation rate analysis of methane hydrate from molecular dynamics simulations. Faraday Discuss. 2015, 179, 463–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasuoka, K.; Matsumoto, M. Molecular dynamics of homogeneous nucleation in the vapor phase. I. Lennard-Jones fluid. J. Chem. Phys. 1998, 109, 8451–8462. [Google Scholar] [CrossRef]
- Florence, A.T.; Attwood, D. Physicochemical Principles of Pharmacy: In Manufacture, Formulation and Clinical Use; Pharmaceutical Press: London, UK, 2015. [Google Scholar]
- Torii, K.; Iitaka, Y. The crystal structure of L-isoleucine. Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 1971, 27, 2237–2246. [Google Scholar] [CrossRef]
- Curland, S.; Meirzadeh, E.; Diskin-Posner, Y. Crystal structure of a new polymorph of (2S, 3S)-2-amino-3-methylpentanoic acid. Acta Crystallogr. Sect. E: Crystallogr. Commun. 2018, 74, 776–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azmi, N.S.M.; Anuar, N.; Roberts, K.J.; Bakar, N.F.A.; Aripin, N.F.K. Molecular aggregation of L-isoleucine in aqueous solution and its impact on the determination of solubility and nucleation kinetics. J. Cryst. Growth 2019, 519, 91–99. [Google Scholar] [CrossRef]
- Sun, H.; Jin, Z.; Yang, C.; Akkermans, R.L.; Robertson, S.H.; Spenley, N.A.; Miller, S.; Todd, S.M. COMPASS II: Extended coverage for polymer and drug-like molecule databases. J. Mol. Modeling 2016, 22, 47. [Google Scholar] [CrossRef]
- Chami Khazraji, A.; Robert, S. Interaction effects between cellulose and water in nanocrystalline and amorphous regions: A novel approach using molecular modeling. J. Nanomater. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Li, Y.; Krause, W.E.; Rojas, O.J.; Pasquinelli, M.A. The soft-confined method for creating molecular models of amorphous polymer surfaces. J. Phys. Chem. B 2012, 116, 1570–1578. [Google Scholar] [CrossRef]
- Yürüdü, C.; Jones, M.J.; Ulrich, J. Modeling of diffusion for crystal growth. Soft Mater. 2012, 10, 257–284. [Google Scholar] [CrossRef]
- Zeng, J.; Wang, A.; Gong, X.; Chen, J.; Chen, S.; Xue, F. Molecular dynamics simulation of diffusion of vitamin c in water solution. Chin. J. Chem. 2012, 30, 115–120. [Google Scholar] [CrossRef]
- Mudalip, S.A.; Bakar, M.A.; Jamal, P.; Adam, F.; Alam, Z. Molecular recognition and solubility of mefenamic acid in water. Asian J. Chem. 2016, 28, 853. [Google Scholar] [CrossRef]
- Rabesiaka, M.; Porte, C.; Bonnin-Paris, J.; Havet, J.-L. An automatic method for the determination of saturation curve and metastable zone width of lysine monohydrochloride. J. Cryst. Growth 2011, 332, 75–80. [Google Scholar] [CrossRef]
- Smith, L.; Duncan, A.; Thomson, G.; Roberts, K.; Machin, D.; McLeod, G. Crystallisation of sodium dodecyl sulphate from aqueous solution: Phase identification, crystal morphology, surface chemistry and kinetic interface roughening. J. Cryst. Growth 2004, 263, 480–490. [Google Scholar] [CrossRef]
- Berlin, E.; Pallansch, M. Densities of several proteins and L-amino acids in the dry state. J. Phys. Chem. 1968, 72, 1887–1889. [Google Scholar] [CrossRef]
- Chianese, A. Characterization of crystal size distribution. Ind. Cryst. Process Monit. Control 2012. [Google Scholar]
- El-Shall, H.; Jeon, J.h.; Abdel-Aal, E.; Khan, S.; Gower, L.; Rabinovich, Y. A study of primary nucleation of calcium oxalate monohydrate: I-Effect of supersaturation. Cryst. Res. Technol. J. Exp. Ind. Crystallogr. 2004, 39, 214–221. [Google Scholar] [CrossRef]
- Mullin, J.W. Crystallization; Elsevier: Oxford, UK, 2001. [Google Scholar]
- Ghader, S.; Manteghian, M.; Kokabi, M.; Mamoory, R.S. Induction time of reaction crystallization of silver nanoparticles. Chem. Eng. Technol. Ind. Chem. Plant Equip. Process Eng. Biotechnol. 2007, 30, 1129–1133. [Google Scholar] [CrossRef]
- Zhan, L.; Zhang, Y.; Zheng, S.; Zhang, Y.; Fan, B.; Li, P.; Zhang, Y. Crystallization kinetics of ammonium polyvanadate. J. Cryst. Growth 2019, 526, 125218. [Google Scholar] [CrossRef]
- Fan, S.; Gu, X.; Zhou, X.; Duan, X.; Li, H. Determination of Nucleation Kinetics from the Induction Time of 1, 1-Diamino-2, 2-Dinitroethylene (FOX-7) in DMSO/Water. Energetic Mater. Front. 2021, 2, 62–68. [Google Scholar] [CrossRef]
- Saban, K.; Thomas, J.; Varughese, P.; Varghese, G. Thermodynamics of crystal nucleation in an external electric field. Cryst. Res. Technol. J. Exp. Ind. Crystallogr. 2002, 37, 1188–1199. [Google Scholar] [CrossRef]
- Abdel-Aal, E.; El-Shazly, A.; El-Shahat, M. Crystal nucleation of nano crystallite strontium malonate without and with additives. Cryst. Growth Des. 2013, 13, 4395–4401. [Google Scholar] [CrossRef]
- Yoshioka, M.; Hancock, B.C.; Zografi, G. Crystallization of indomethacin from the amorphous state below and above its glass transition temperature. J. Pharm. Sci. 1994, 83, 1700–1705. [Google Scholar] [CrossRef] [PubMed]
- Koryta, J.; Dvořák, J.; Kavan, L. Principles of Electrochemistry; John Wiley & Sons Inc: Chichester, UK, 1993. [Google Scholar]
Concentration (g/L) | Number of L-Isoleucine Molecules | Number of Water Molecules | Tsat (K) | Supersaturation, S | T (K) |
---|---|---|---|---|---|
48 | 50 | 7600 | 345 | 1.34 | 324.5 |
1.27 | 327.5 | ||||
1.22 | 329.0 | ||||
1.20 | 330.5 | ||||
44 | 50 | 8300 | 339 | 1.34 | 316.0 |
1.28 | 319.5 | ||||
1.25 | 321.5 | ||||
1.23 | 323.0 |
Nucleation Rate, J (no. of Nuclei/m3⋅s) | ||||||
---|---|---|---|---|---|---|
0 V a | 5 V | 9 V | 0 Va | 5 V | 9 V | |
Conc., C (g/L) | Cooling Rate, R = 0.1 (°C/min) | Cooling Rate, R = 0.7 (°C/min) | ||||
42 | 7.15 × 1025 | 9.90 × 1025 | 1.12 × 1026 | 1.47 × 1026 | 2.24 × 1026 | 2.58 × 1026 |
44 | 7.69 × 1025 | 1.13 × 1026 | 1.25 × 1026 | 1.51 × 1026 | 2.36 × 1026 | 2.81 × 1026 |
46 | 9.53 × 1025 | 1.22 × 1026 | 1.52 × 1026 | 2.03 × 1026 | 2.91 × 1026 | 3.67 × 1026 |
48 | 8.51 × 1025 | 1.04 × 1026 | 1.22 × 1026 | 1.27 × 1026 | 1.32 × 1026 | 1.38 × 1026 |
Electric Potential | Rate, R (°C/min) | Solution Concentration | |||
---|---|---|---|---|---|
42 g/L | 44 g/L | 46 g/L | 48 g/L | ||
5 V | 0.1 | A + B | A + B | A + B | A + B |
0.25 | B | A + B | B | A + B | |
0.5 | B | A + B | B | A + B | |
0.7 | B | A + B | A + B | B | |
9 V | 0.1 | A + B | A + B | A + B | A + B |
0.25 | B | B | A + B | A + B | |
0.5 | B | A + B | A + B | A + B | |
0.7 | B | A + B | A + B | B |
Electric Potential | Isothermal Crystallisation | |||
---|---|---|---|---|
Homogeneous Mechanism | Heterogeneous Mechanism | Homogeneous Mechanism | Heterogeneous Mechanism | |
S = 1.41 | S = 1.49 | S = 1.34 | S = 1.42 | |
5 V | B | B | B | B |
S = 1.62 | S = 1.74 | S = 1.61 | S = 1.70 | |
20 V | B | B | B | B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azmi, N.S.M.; Anuar, N.; Othman, M.F.; Bakar, N.F.A.; Naim, M.N. Electric-Potential-Assisted Crystallisation of L-Isoleucine: A Study of Nucleation Kinetics and Its Associated Parameters. Crystals 2021, 11, 620. https://doi.org/10.3390/cryst11060620
Azmi NSM, Anuar N, Othman MF, Bakar NFA, Naim MN. Electric-Potential-Assisted Crystallisation of L-Isoleucine: A Study of Nucleation Kinetics and Its Associated Parameters. Crystals. 2021; 11(6):620. https://doi.org/10.3390/cryst11060620
Chicago/Turabian StyleAzmi, Nik Salwani Md, Nornizar Anuar, Muhamad Fitri Othman, Noor Fitrah Abu Bakar, and Mohd Nazli Naim. 2021. "Electric-Potential-Assisted Crystallisation of L-Isoleucine: A Study of Nucleation Kinetics and Its Associated Parameters" Crystals 11, no. 6: 620. https://doi.org/10.3390/cryst11060620
APA StyleAzmi, N. S. M., Anuar, N., Othman, M. F., Bakar, N. F. A., & Naim, M. N. (2021). Electric-Potential-Assisted Crystallisation of L-Isoleucine: A Study of Nucleation Kinetics and Its Associated Parameters. Crystals, 11(6), 620. https://doi.org/10.3390/cryst11060620