A High-Energy, Narrow-Pulse-Width, Long-Wave Infrared Laser Based on ZGP Crystal
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Webber, M.E.; Pushkarsky, M.; Patel, C.K.N. Optical detection of chemical warfare agents and toxic industrial chemicals: Simulation. J. Appl. Phys. 2005, 97, 113101. [Google Scholar] [CrossRef] [Green Version]
- Petrov, V. Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals. Prog. Quantum Electron. 2015, 42, 1–106. [Google Scholar] [CrossRef]
- Hildenbrand, A.; Kieleck, C.; Tyazhev, A.; Marchev, G.; Stöppler, G.; Eichhorn, M.; Schunemann, P.G.; Panyutin, V.L.; Petrov, V. Laser damage of the nonlinear crystals CdSiP2 and ZnGeP2 studied with nanosecond pulses at 1064 and 2090 nm. Opt. Eng. 2014, 53, 122511. [Google Scholar] [CrossRef]
- Gutty, F.; Grisard, A.; Larat, C.; Papillon, D.; Schwarz, M.; Gerard, B.; Ostendorf, R.; Rattunde, M.; Wagner, J.; Lallier, E. 140 W peak power laser system tunable in the LWIR. Opt. Express 2017, 25, 18897–18906. [Google Scholar] [CrossRef] [PubMed]
- Wueppen, J.; Nyga, S.; Jungbluth, B.; Hoffmann, D. 1.95 μm-pumped OP-GaAs optical parametric oscillator with 10.6 μm idler wavelength. Opt. Lett. 2016, 41, 4225–4228. [Google Scholar] [CrossRef] [PubMed]
- Boyko, A.A.; Kostyukova, N.Y.; Marchev, G.M.; Pasiskevicius, V.; Kolker, D.B.; Zukauskas, A.; Petrov, V. Rb:PPKTP optical parametric oscillator with intracavity difference-frequency generation in AgGaSe2. Opt. Lett. 2016, 41, 2791–2794. [Google Scholar] [CrossRef] [PubMed]
- Boyko, A.A.; Marchev, G.M.; Petrov, V.; Pasiskevicius, V.; Kolker, D.B.; Zukauskas, A.; Kostyukova, N.Y. Intracavity-pumped, cascaded AgGaSe2 optical parametric oscillator tunable from 5.8 to 18 μm. Opt. Express 2015, 23, 33460–33465. [Google Scholar] [CrossRef] [PubMed]
- Gerhards, M. High energy and narrow bandwidth mid IR nanosecond laser system. Opt. Commun. 2004, 241, 493–497. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, G.Y.; Yang, C.; Yao, B.Q.; Wang, R.X.; Mi, S.Y.; Yang, K.; Dai, T.Y.; Duan, X.M.; Ju, Y.L. 1 W, 10.1 μm, CdSe optical parametric oscillator with continuous-wave seed injection. Opt. Lett. 2020, 45, 2119–2122. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, C.; Liu, G.Y.; Yao, B.Q.; Wang, R.X.; Yang, K.; Mi, S.Y.; Dai, T.Y.; Duan, X.M.; You, Y.L. 11 μm, high beam quality idler-resonant CdSe optical parametric oscillator with continuous-wave injection-seeded at 2.58 μm. Opt. Express 2020, 28, 17056–17063. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.R.; Chen, Y.; Yao, B.Q.; Yao, J.Y.; Guo, Y.W.; Wang, R.X.; Dai, T.Y.; Duan, X.M. High-efficiency, tunable 8-9 μm BaGa4Se7 optical parametric oscillator pumped at 2.1 μm. Opt. Mater. Express 2018, 8, 3332–3337. [Google Scholar] [CrossRef]
- Bakkland, A.; Fonnum, H.; Lippert, E.; Haakestad, M.W. Long-wave infrared source with 45 mJ pulse energy based on nonlinear conversion in ZnGeP2. Conf. Lasers Electro Opt. 2016. [Google Scholar] [CrossRef]
- Liu, G.Y.; Chen, Y.; Yao, B.Q.; Yang, K.; Qian, C.P.; Dai, T.Y.; Duan, X.M. Study on long-wave infrared ZnGeP2 subsequent optical parametric amplifiers with different types of phase matching of ZnGeP2 crystals. Appl. Phys. B 2019, 125, 233. [Google Scholar] [CrossRef]
- Liu, G.Y.; Chen, Y.; Yao, B.Q.; Wang, R.X.; Yang, K.; Yang, C.; Mi, S.Y.; Dai, T.Y.; Duan, X.M. 3.5 W long-wave infrared ZnGeP2 optical parametric oscillator at 9.8 μm. Opt. Lett. 2020, 45, 2347–2350. [Google Scholar] [CrossRef] [PubMed]
- Vodopyanov, K.L.; Ganikhanov, F.; Maffetone, J.P.; Zwieback, I.; Ruderman, W. ZnGeP2 optical parametric oscillator with 3.8–12.4 μm tunability. Opt. Lett. 2000, 25, 841–843. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.P.; Yu, T.; Liu, J.; Jiang, Y.Y.; Wang, S.J.; Shi, X.C.; Ye, X.S.; Chen, W.B. 5.4 W, 9.4 ns pulse width, long-wave infrared ZGP OPO pumped by Ho:YAG MOPA system. IEEE Photonics J. 2021, 17. in press. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, C.; Yu, T.; Liu, J.; Jiang, Y.; Wang, S.; Shi, X.; Ye, X.; Chen, W. A High-Energy, Narrow-Pulse-Width, Long-Wave Infrared Laser Based on ZGP Crystal. Crystals 2021, 11, 656. https://doi.org/10.3390/cryst11060656
Qian C, Yu T, Liu J, Jiang Y, Wang S, Shi X, Ye X, Chen W. A High-Energy, Narrow-Pulse-Width, Long-Wave Infrared Laser Based on ZGP Crystal. Crystals. 2021; 11(6):656. https://doi.org/10.3390/cryst11060656
Chicago/Turabian StyleQian, Chuanpeng, Ting Yu, Jing Liu, Yuyao Jiang, Sijie Wang, Xiangchun Shi, Xisheng Ye, and Weibiao Chen. 2021. "A High-Energy, Narrow-Pulse-Width, Long-Wave Infrared Laser Based on ZGP Crystal" Crystals 11, no. 6: 656. https://doi.org/10.3390/cryst11060656
APA StyleQian, C., Yu, T., Liu, J., Jiang, Y., Wang, S., Shi, X., Ye, X., & Chen, W. (2021). A High-Energy, Narrow-Pulse-Width, Long-Wave Infrared Laser Based on ZGP Crystal. Crystals, 11(6), 656. https://doi.org/10.3390/cryst11060656