The Investigation on Mid-Far Infrared Nonlinear Crystal AgGaGe5Se12 (AGGSe)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Poly-Crystalline Prepared
2.2. Crystal Growth of AGGSe
2.2.1. Seed Orientation Selected
2.2.2. Melting Point (or Seed Melting Point) Ascertained
2.2.3. Other Growth Parameters Chosen
3. Results and Discussion
3.1. Rocking Curve Measurement
3.2. Transmission Spectrum Test
3.3. SHG Experiment
3.4. LIDT Measurement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Das, S. Broadly tunable multi-output coherent source based on optical parametric oscillator. Opt. Laser Technol. 2015, 71, 63–67. [Google Scholar] [CrossRef]
- Parasyuk, O.V.; Babizhetskyy, V.S.; Khyzhun, O.Y.; Levytskyy, V.O.; Kityk, I.V.; Myronchuk, G.L.; Tsisar, O.V.; Piskach, L.V.; Jedryka, J.; Maciag, A.; et al. Novel quaternary TlGaSn2Se6 single crystal as promising material for laser operated infrared nonlinear optical modulators. Crystals 2017, 7, 341. [Google Scholar] [CrossRef] [Green Version]
- Murray, R.T.; Chandran, A.M.; Battle, R.A.; Runcorn, T.H.; Schunemann, P.G.; Zawilski, K.T.; Guha, S.; Taylor, J.R. Seeded optical parametric generation in CdSiP2 pumped by a Raman fiber amplifier at 1.24 μm. Opt. Lett. 2021, 46, 2039–2042. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Wu, Y.; Liang, S.; Shardlow, P.C.; Shepherd, D.P.; Alam, S.U.; Xu, L.; Richardson, D.J. Controllable duration and repetition-rate picosecond pulses from a high-average-power OP-GaAs OPO. Opt. Express 2020, 28, 32540–32548. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Mei, D.; Bai, L.; Lin, Z.; Yin, W.; Fu, P.; Wu, Y. BaGa4Se7: A New Congruent-Melting IR Nonlinear Optical Material. Inorg. Chem. 2010, 49, 9212–9216. [Google Scholar] [CrossRef] [PubMed]
- Nikogosyan, D.N. Nonlinear Optical Crystal: A Complete Survey; Springer: Berlin, Germany, 2005; pp. 75–108. [Google Scholar]
- Lei, Z.; Okunev, A.; Zhu, C.; Verozubova, G.; Yang, C. Low-angle boundaries in ZnGeP2 single crystals. J. Appl. Crystallogr. 2018, 51, 361–367. [Google Scholar] [CrossRef]
- Badikov, V.V.; Tyulyupa, A.G.; Shevyrdyaeva, G.S.; Sheina, S.G. Solid solutions in the AgGaS2 -GeS2 and AgGaSe2 -GeSe2 systems. Inorg. Mater. 1991, 27, 177–180. [Google Scholar]
- Ni, Y.; Wu, H.; Xiao, R.; Huang, C.; Wang, Z.; Mao, M.; Qi, M.; Cheng, G. Growth and optical properties of single AgGaGe5Se12 (AGGSe) crystal. Opt. Mater. 2015, 42, 458–461. [Google Scholar] [CrossRef]
- Huang, W.; Wu, J.; Chen, B.; Li, J.; He, Z. Crystal growth and thermal annealing of AgGaGe5Se12 crystal. J. Alloy. Compd. 2021, 862, 158002. [Google Scholar] [CrossRef]
- Reshak, A.H.; Parasyuk, O.V.; Fedorchuk, A.O.; Kamarudin, H.; Auluck, S.; Chyský, J. Optical Spectra and Band Structure of AgxGaxGe1–xSe2 (x = 0.333, 0.250, 0.200, 0.167) Single Crystals: Experiment and Theory. J. Phys. Chem. B 2013, 117, 15220–15231. [Google Scholar] [CrossRef]
- Chen, Y.; Yao, B.; Wu, H.; Ni, Y.; Liu, G.; Dai, T.; Duan, X.; Ju, Y. Broadband second-harmonic and sum-frequency generation with a long-wave infrared laser in AgGaGe5Se12. Appl. Opt. 2020, 59, 5247–5251. [Google Scholar] [CrossRef] [PubMed]
- Knuteson, D.; Singh, N.; Kanner, G.; Berghmans, A.; Wagner, B.; Kahler, D.; McLaughlin, S.; Suhre, D.; Gottlieb, M. Quaternary AgGaGenSe2(n+1) crystals for NLO applications. J. Cryst. Growth 2010, 312, 1114–1117. [Google Scholar] [CrossRef]
- Petrov, V.; Noack, F.; Badikov, V.; Shevyrdyaeva, G.; Panyutin, V.; Chizhikov, V. Phase-matching and femtosecond difference-frequency generation in the quaternary semiconductor AgGaGe5Se12. Appl. Opt. 2004, 43, 4590–4597. [Google Scholar] [CrossRef] [PubMed]
- Schunemann, P.G.; Zawilski, K.T.; Pollak, T.M. Horizontal gradient freeze growth of AgGaGeS4 and AgGaGe5Se12. J. Cryst. Growth 2006, 287, 248–251. [Google Scholar] [CrossRef]
- Singh, N.B.; Knuteson, D.J.; Kanner, G.; Berghmans, A.; Green, K.; Wagner, B.; Kahler, D.; King, M.; McLaughlin, S. Ternary and quaternary selenide crystals for nonlinear optical applications. Proc. SPIE 2011, 8120, 812002. [Google Scholar]
- Zhao, B.J.; Zhu, S.F.; He, Z.Y.; Chen, B.J. Research progress of middle and far infrared nonlinear optical crystals AgGaGenQ2(n+1)(Q=S, Se). J. Synth. Cryst. 2020, 49, 1417–1426. [Google Scholar]
- Tochitsky, S.Y.; Petukhov, V.O.; Gorobets, V.A.; Churakov, V.V.; Jakimovich, V.N. Efficient continuous-wave frequency doubling of a tunable CO2 laser in AgGaSe2. Appl. Opt. 1997, 36, 1882–1888. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, Y.; Hu, Q.; Wu, H.; Han, W.; Yu, X.; Mao, M. The Investigation on Mid-Far Infrared Nonlinear Crystal AgGaGe5Se12 (AGGSe). Crystals 2021, 11, 661. https://doi.org/10.3390/cryst11060661
Ni Y, Hu Q, Wu H, Han W, Yu X, Mao M. The Investigation on Mid-Far Infrared Nonlinear Crystal AgGaGe5Se12 (AGGSe). Crystals. 2021; 11(6):661. https://doi.org/10.3390/cryst11060661
Chicago/Turabian StyleNi, Youbao, Qianqian Hu, Haixin Wu, Weimin Han, Xuezhou Yu, and Mingsheng Mao. 2021. "The Investigation on Mid-Far Infrared Nonlinear Crystal AgGaGe5Se12 (AGGSe)" Crystals 11, no. 6: 661. https://doi.org/10.3390/cryst11060661
APA StyleNi, Y., Hu, Q., Wu, H., Han, W., Yu, X., & Mao, M. (2021). The Investigation on Mid-Far Infrared Nonlinear Crystal AgGaGe5Se12 (AGGSe). Crystals, 11(6), 661. https://doi.org/10.3390/cryst11060661