Ultrasound-Assisted Synthesis and DFT Calculations of the Novel 1D Pb (II) Coordination Polymer with Thiosemicarbazone Derivative Ligand and Its Use for Preparation of PbO Clusters
Abstract
:1. Introduction:
2. Experimental:
2.1. Instruments and Materials
2.2. Synthesis of Nano-Structure of [Pb(L)2(CH3COO)]n
2.3. Synthesis of Isolate Single Crystal of [Pb(L)2(CH3COO)]n
2.4. Synthesis of Lead (II) Oxide Clusters
3. Results and Discussion
3.1. Investigation of L Ligand
3.2. Investigation of [Pb(L)2(CH3COO)]n
3.3. Computational Details
3.4. DFT Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Engel, E.R.; Scott, J.L. Advances in the green chemistry of coordination polymer materials. Green Chem. 2020, 22, 3693–3715. [Google Scholar] [CrossRef]
- Lohe, M.R.; Gedrich, K.; Freudenberg, T.; Kockrick, E.; Dellmann, T.; Kaskel, S. Heating and separation using nanomagnet-functionalized metal–organic frameworks. Chem. Commun. 2011, 47, 3075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.R.; Sculley, J.; Zhou, H.C. Metal-organic frameworks for separations. Chem. Rev. 2012, 112, 869–932. [Google Scholar] [CrossRef] [PubMed]
- Yi, F.Y.; Chen, D.; Wu, M.K.; Han, L.; Jiang, H.L. Chemical Sensors Based on Metal–Organic Frameworks. ChemPlusChem 2016, 81, 675–690. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Guo, X.; He, C.; Duan, C. Metal–Organic Frameworks: Versatile Materials for Heterogeneous Photocatalysis. ACS Catal. 2016, 6, 7935–7947. [Google Scholar] [CrossRef]
- Uemura, T.; Yanai, N.; Kitagawa, S. Polymerization reactions in porous coordination polymers. Chem. Soc. Rev. 2009, 38, 1228. [Google Scholar] [CrossRef] [Green Version]
- Jeremias, F.; Khutia, A.; Henninger, S.K.; Janiak, C. MIL-100(Al, Fe) as water adsorbents for heat transformation purposes—a promising application. J. Mater. Chem. 2012, 22, 10148–10151. [Google Scholar] [CrossRef]
- Doherty, C.M.; Knystautas, E.; Buso, D.; Villanova, L.; Konstas, K.; Hill, A.J.; Takahashi, M.; Falcaro, P. Magnetic framework composites for polycyclic aromatic hydrocarbon sequestration. J. Mater. Chem. 2012, 22, 11470. [Google Scholar] [CrossRef]
- Liu, J.Q.; Luo, Z.D.; Pan, Y.; Singh, A.K.; Trivedi, M.; Kumar, A. Recent developments in luminescent coordination polymers: Designing strategies, sensing application and theoretical evidences. Coord. Chem. Rev. 2020, 406, 213145. [Google Scholar] [CrossRef]
- Engelhardt, L.M.; Furphy, B.M.; Harrowfield, J.M.; Patrick, J.M.; White, A.H. 1:1 Adducts of lead(II) thiocyanate with 1,10-phenanthroline and 2,2’,6’,2"-terpyridine. Inorg. Chem. 1989, 28, 1410. [Google Scholar] [CrossRef]
- Shimonni-Livny, L.; Glusker, J.P.; Bock, C.W. Lone Pair Functionality in Divalent Lead Compounds. Inorg. Chem. 1998, 37, 1853–1867. [Google Scholar] [CrossRef]
- Imran, M.; Mix, A.; Neumann, B.; Stammler, H.G.; Monkowius, U.; Gründlinger, P.; Mitzel, N.W. Hemi- and holo-directed lead(ii) complexes in a soft ligand environment. Dalt. Trans. 2014, 44, 924–937. [Google Scholar] [CrossRef]
- Zhu, X.; Li, Y.; Zhang, S.; Liu, R.; Qian, G.; Zhang, H.; Gao, J. Two new crystal structures of two-dimensional lead(II) coordination polymers with flexible alicyclic carboxylate ligands. Inorg. Nano-Metal Chem. 2017, 47, 717–721. [Google Scholar] [CrossRef]
- Pokhrel, N.; Vabbina, P.K.; Pala, N. Sonochemistry: Science and Engineering. Ultrason Sonochem. 2016, 29, 104–128. [Google Scholar] [CrossRef]
- Mason, T.J. Ultrasound in synthetic organic chemistry. Chem. Soc. Rev. 1997, 26, 443–451. [Google Scholar] [CrossRef]
- Suslick, K.S.; Price, G.J. Applications of ultrasound to materials chemistry. Ann. Rev. Mater. Sci. 1999, 29, 295–326. [Google Scholar] [CrossRef] [Green Version]
- Hanifehpour, Y.; Dadashi, J.; Mirtamizdoust, B. Ultrasound-Assisted Synthesis and Crystal Structure of Novel 2D Cd (II) Metal–Organic Coordination Polymer with Nitrite End Stop Ligand as a Precursor for Preparation of CdO Nanoparticles. Crystals 2021, 11, 197. [Google Scholar] [CrossRef]
- Mirtamizdoust, B.; Hanifehpour, Y.; Behzadfar, E.; Roodsari, M.S.; Jung, J.H.; Joo, S.W. A novel nano-structured three-dimensional supramolecular metal-organic framework for cadmium (II): A new precursor for producing nano cadmium oxide. J. Mol. Struct. 2020, 1201, 127191. [Google Scholar] [CrossRef]
- Mirtamizdoust, B. Sonochemical synthesis of nano lead(II) metal-organic coordination polymer; New precursor for the preparation of nano-materials. Ultrason Sonochem. 2017, 35, 263–269. [Google Scholar] [CrossRef]
- Akhbari, K.; Morsali, A.; Retailleau, P. Effect of two sonochemical procedures on achieving to different morphologies of lead (II) coordination polymer nano-structures. Ultrason. Sonochemistry 2013, 20, 1428–1435. [Google Scholar] [CrossRef]
- Sadeghzadeh, H.; Morsali, A. Hedge balls nano-structure of a mixed-ligand lead (II) coordination polymer; thermal, structural and X-ray powder diffraction studies. CrystEngComm 2010, 12, 370–372. [Google Scholar] [CrossRef]
- Ranjbar, Z.R.; Morsali, A. Sonochemical syntheses of a new nano-sized porous lead (II) coordination polymer as precursor for preparation of lead (II) oxide nanoparticles. J. Mol. Struct. 2009, 936, 206–212. [Google Scholar] [CrossRef]
- Li, B.; Huang, D.; Zhang, T.; Niu, X.; Liu, J.; Zhang, W.; Liu, Y.; Liu, Z.; Zhang, P.; Li, J. Five lead (II) coordinated polymers assembled from asymmetric azoles carboxylate ligands: Synthesis, structures and fluorescence properties. Inorg. Chim. Acta 2021, 514, 120035. [Google Scholar] [CrossRef]
- Mercury 2.4, Copyright Cambridge Crystallographic Data Centre: 12 Union Road; Cambridge, UK.
- Oxford Diffraction. CrysAlis RED and CrysAlis CCD Software (Ver. 1.171.32.5); Oxford Diffraction Ltd.: Abingdon, UK, 2010. [Google Scholar]
- Gautier, C.; Muller, M.C.; Averous, M. Study of PbSe layer oxidation and oxide dissolution. Appl. Surf. Sci. 1999, 141, 157–163. [Google Scholar] [CrossRef]
- Zingg, D.S.; Hercules, D.M. Electron spectroscopy for chemical analysis studies of lead sulfide oxidation. J. Phys. Chem. 1978, 82, 1992. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry.III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648. [Google Scholar] [CrossRef] [Green Version]
- Hay, P.J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270. [Google Scholar] [CrossRef]
- Frish, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Zakrzewski, V.G.; Montgomery, J.A., Jr.; Stratmann, R.E.; Burant, J.C.; et al. GAUSSIAN 98, Revision A.9; Gaussian Inc.: Pittsburgh, PA, USA, 1998. [Google Scholar]
- Younk, E.H.; Kunz, A.B. An ab initio investigation of the electronic structure of lithium azide (LiN3), sodium azide (NaN3), and lead azide [Pb(N3)2]. Int. J. Quantum Chem. 1997, 63, 615–621. [Google Scholar] [CrossRef]
Empirical formula | C16 H18 N8 O2 Pb S2 |
Formula weight | 625.69 |
Temperature | 150(2) K |
Wavelength | 1.54178 Å |
Crystal system | Monoclinic |
Space group | Cc |
Unit cell dimensions | a = 3.9618(1) Å α = 90° b = 43.0647(12) Å β = 91.669(2)° c = 12.0454(4) Å γ = 90° |
Volume | 2054.24(10) Å 3 |
Z | 4 |
Density (calculated) | 2.023 Mg/m3 |
Absorption coefficient | 18.144 mm−1 |
F(000) | 1200 |
Crystal size | 0.100 × 0.005 × 0.004 mm3 |
Theta range for data collection | 2.052 to 67.793° |
Index ranges | −4 <= h <= 4, −50 <= k <= 50, −14 <= l <= 14 |
Reflections collected | 12955 |
Independent reflections | 3250 [R(int) = 0.0413] |
Completeness to theta = 67.679° | 99.5% |
Absorption correction | Semi-empirical from equivalents |
Maximum and minimum transmission | 0.7530 and 0.4863 |
Refinement method | Full-matrix least-squares on F2 |
Data/restraints/parameters | 3250/2/263 |
Goodness-of-fit on F2 | 1.020 |
Final R indices [I>2sigma(I)] | R1 = 0.0212, wR2 = 0.0466 |
R indices (all data) | R1 = 0.0225, wR2 = 0.0470 |
Absolute structure parameter | 0.016(7) |
Extinction coefficient | n/a |
Largest diff. peak and hole | 0.610 and −1.001 e. Å −3 |
Experimental | Calculated | Experimental | Calculated | ||
---|---|---|---|---|---|
Pb(1)-N(2) | 2.573(6) | 2.55 | N(3)-C(2) | 1.273(10) | 1.30 |
Pb(1)-O(1) | 2.605(6) | 2.61 | N(4)-C(6) | 1.323(12) | 1.35 |
Pb(1)-O(2) | 2.638(5) | 2.64 | N(4)-C(5) | 1.347(12) | 1.35 |
Pb(1)-S(1) | 2.7537(18) | 2.86 | N(5)-C(8) | 1.316(10) | 1.31 |
Pb(1)-S(1)#1 | 3.0770(18) | 3.10 | N(6)-N(7) | 1.353(9) | 1.36 |
Pb(1)-S(2) | 3.1195(19) | 3.12 | N(6)-C(8) | 1.362(10) | 1.37 |
S(1)-C(1) | 1.746(8) | 1.74 | N(6)-H(6) | 0.8800 | 0.90 |
S(2)-C(8) | 1.694(8) | 1.70 | N(7)-C(9) | 1.271(11) | 1.28 |
N(2)-Pb(1)-O(1) | 124.1(2) | 124 | N(4)-C(5)-C(4) | 123.5(9) | 123 |
N(2)-Pb(1)-O(2) | 131.15(18) | 132 | N(4)-C(5)-H(5C) | 118.2 | 118 |
O(1)-Pb(1)-O(2) | 49.47(16) | 52 | C(4)-C(5)-H(5C) | 118.2 | 119 |
N(2)-Pb(1)-S(1) | 58.17(14) | 59 | N(4)-C(6)-C(7) | 124.2(8) | 125 |
O(1)-Pb(1)-S(1) | 85.40(13) | 84 | N(4)-C(6)-H(6A) | 117.9 | 117 |
O(2)-Pb(1)-S(1) | 73.15(13) | 74 | N(5)-C(8)-N(6) | 117.1(7) | 117 |
N(2)-Pb(1)-S(1)#1 | 84.03(15) | 84 | N(5)-C(8)-S(2) | 124.5(6) | 125 |
O(1)-Pb(1)-S(1)#1 | 137.89(12) | 138 | N(6)-C(8)-S(2) | 118.3(6) | 117 |
O(2)-Pb(1)-S(1)#1 | 88.60(13) | 89 | N(7)-C(9)-C(10) | 120.3(7) | 121 |
S(1)-Pb(1)-S(1)#1 | 85.41(5) | 85 | N(7)-C(9)-H(9A) | 119.8 | 119 |
N(2)-Pb(1)-S(2) | 70.38(14) | 70 | N(8)-C(12)-C(11) | 123.0(7) | 124 |
O(1)-Pb(1)-S(2) | 77.92(12) | 78 | N(8)-C(12)-H(12A) | 118.5 | 119 |
O(2)-Pb(1)-S(2) | 127.08(13) | 128 | N(8)-C(13)-C(14) | 123.9(8) | 123 |
S(1)-Pb(1)-S(2) | 100.85(5) | 101 | N(8)-C(13)-H(13A) | 118.1 | 118 |
S(1)#1-Pb(1)-S(2) | 144.19(5) | 145 | C(8)-S(2)-Pb(1) | 114.3(3) | 114 |
C(1)-S(1)-Pb(1) | 84.6(3) | 85 | C(15)-O(1)-Pb(1) | 95.3(5) | 96 |
C(1)-S(1)-Pb(1)#2 | 100.7(3) | 100 | C(15)-O(2)-Pb(1) | 94.4(4) | 95 |
Pb(1)-S(1)-Pb(1)#2 | 85.42(5) | 86 | C(1)-N(2)-Pb(1) | 101.2(5) | 101 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dadashi, J.; Hanifehpour, Y.; Mirtamizdoust, B.; Abdolmaleki, M.; Jegarkandi, E.M.; Rezaei, M.; Joo, S.W. Ultrasound-Assisted Synthesis and DFT Calculations of the Novel 1D Pb (II) Coordination Polymer with Thiosemicarbazone Derivative Ligand and Its Use for Preparation of PbO Clusters. Crystals 2021, 11, 682. https://doi.org/10.3390/cryst11060682
Dadashi J, Hanifehpour Y, Mirtamizdoust B, Abdolmaleki M, Jegarkandi EM, Rezaei M, Joo SW. Ultrasound-Assisted Synthesis and DFT Calculations of the Novel 1D Pb (II) Coordination Polymer with Thiosemicarbazone Derivative Ligand and Its Use for Preparation of PbO Clusters. Crystals. 2021; 11(6):682. https://doi.org/10.3390/cryst11060682
Chicago/Turabian StyleDadashi, Jaber, Younes Hanifehpour, Babak Mirtamizdoust, Mehdi Abdolmaleki, Elham Mohammadi Jegarkandi, Mahboubeh Rezaei, and Sang Woo Joo. 2021. "Ultrasound-Assisted Synthesis and DFT Calculations of the Novel 1D Pb (II) Coordination Polymer with Thiosemicarbazone Derivative Ligand and Its Use for Preparation of PbO Clusters" Crystals 11, no. 6: 682. https://doi.org/10.3390/cryst11060682
APA StyleDadashi, J., Hanifehpour, Y., Mirtamizdoust, B., Abdolmaleki, M., Jegarkandi, E. M., Rezaei, M., & Joo, S. W. (2021). Ultrasound-Assisted Synthesis and DFT Calculations of the Novel 1D Pb (II) Coordination Polymer with Thiosemicarbazone Derivative Ligand and Its Use for Preparation of PbO Clusters. Crystals, 11(6), 682. https://doi.org/10.3390/cryst11060682