Temperature and Chemical Reaction Distribution of a Laminar Diffusion Flame Measured by X-ray Compton Scattering
Abstract
:1. Introduction
2. Flame Measurement by Compton Scattered X-rays
3. Materials and Methods
4. Results and Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, C.C.; Tran, M.-V.; Scribano, G.; Chong, C.T.; Ooi, J.B.; Cong, H.T. Numerical Study of NOx and Soot Formations in Hydrocarbon Diffusion Flames. Energy Fuels 2019, 33, 12839–12851. [Google Scholar] [CrossRef]
- Xiao, X.; Choi, C.W.; Puri, I.K. Temperature measurements in steady two-dimensional partially premixed flames using laser interferometric holography. Combust. Flame 2000, 120, 318–332. [Google Scholar] [CrossRef]
- Sakurai, H.; Kawahara, N.; Itou, M.; Tomita, E.; Suzuki, K.; Sakurai, Y. Densitometry and temperature measurement of combustion gas by X-ray Compton scattering. J. Synchrotron Radiat. 2016, 23, 617–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, M.J. Compton scattering and electron momentum determination. Rep. Prog. Phys. 1985, 48, 415–481. [Google Scholar] [CrossRef] [Green Version]
- Sharaf, J. Practical aspects of Compton scatter densitometry. Appl. Radiat. Isot. 2001, 54, 801–809. [Google Scholar] [CrossRef]
- Tieng, S.M.; Lai, W.Z.; Fujiwara, T. Holographic temperature measurement on axisymmetric propane-air, fuel-lean flame. Meas. Sci. Technol. 1992, 3, 1179–1187. [Google Scholar] [CrossRef]
- Sakurai, Y. High-Energy Inelastic-Scattering Beamline for Electron Momentum Density Study. J. Synchrotron Radiat. 1998, 5, 208–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maréchal, X.-M.; Hara, T.; Tanabe, T.; Tanaka, T.; Kitamura, H. Development of an elliptical multipole wiggler at SPring-8. J. Synchrotron Radiat. 1998, 5, 431–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaoka, H.; Hiraoka, N.; Ito, M.; Mizumaki, M.; Sakurai, Y.; Kakutani, Y.; Koizumi, A.; Sakai, N.; Higashi, Y. Performance of bentcrystal monochromators for high-energy synchrotron radiation. J. Synchrotron Radiat. 2000, 7, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Dovesi, R.; Orlando, R.; Erba, A.; Zicovich-Wilson, C.; Civalleri, B.; Casassa, S.; Maschio, L.; Ferrabone, M.; De La Pierre, M.; D’Arco, P.; et al. CRYSTAL14: A program for the ab initio investigation of crystalline solids. Int. J. Quantum Chem. 2014, 114, 1287–1317. [Google Scholar] [CrossRef]
- Zama, Y.; Shimizu, K.; Tsukui, M.; Furuhata, T.; Arai, M. Relationship between O2 Concentration and Soot Formation in Propane Laminar Diffusion Flame. Trans. Jpn. Soc. Mech. Eng. Ser. B 2013, 79, 1147–1154. [Google Scholar] [CrossRef]
- Kobashi, Y.; Zama, Y.; Kuboyama, T. Modeling wall film formation and vaporization of a gasoline surrogate fuel. Int. J. Heat Mass Transf. 2020, 147, 119035. [Google Scholar] [CrossRef]
- Suzuki, K.; Barbiellini, B.; Orikasa, Y.; Kaprzyk, S.; Itou, M.; Yamamoto, K.; Wang, Y.J.; Hafiz, H.; Uchimoto, Y.; Bansil, A.; et al. Non-destructive measurement of in-operando lithium concentration in batteries via x-ray Compton scattering. J. Appl. Phys. 2016, 119, 025103. [Google Scholar] [CrossRef]
- Suzuki, K.; Suzuki, A.; Ishikawa, T.; Itou, M.; Yamashige, H.; Orikasa, Y.; Uchimoto, Y.; Sakurai, Y.; Sakurai, H. In operando quantitation of Li concentration for a commercial Li-ion rechargeable battery using high-energy X-ray Compton scattering. J. Synchrotron Radiat. 2017, 24, 1006–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, H.; Yan, Y.; Xiang, L.; Han, W.; Ren, F.; Peng, L. Effect of oxygen-rich combustion on soot formation in laminar co-flow propane diffusion flames. J. Energy Inst. 2020, 93, 822–832. [Google Scholar] [CrossRef]
- Chu, H.; Han, W.; Cao, W.; Tao, C.; Raza, M.; Chen, L. Experimental investigation of soot morphology and primary particle size along axial and radial direction of an ethylene diffusion flame via electron microscopy. J. Energy Inst. 2019, 93, 1294–1302. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakurai, H.; Tsuji, N.; Zama, Y.; Suzuki, K.; Hoshi, K.; Hiramoto, D.; Sakurai, Y.; Furuhata, T. Temperature and Chemical Reaction Distribution of a Laminar Diffusion Flame Measured by X-ray Compton Scattering. Crystals 2021, 11, 787. https://doi.org/10.3390/cryst11070787
Sakurai H, Tsuji N, Zama Y, Suzuki K, Hoshi K, Hiramoto D, Sakurai Y, Furuhata T. Temperature and Chemical Reaction Distribution of a Laminar Diffusion Flame Measured by X-ray Compton Scattering. Crystals. 2021; 11(7):787. https://doi.org/10.3390/cryst11070787
Chicago/Turabian StyleSakurai, Hiroshi, Naruki Tsuji, Yoshio Zama, Kosuke Suzuki, Kazushi Hoshi, Daisuke Hiramoto, Yoshiharu Sakurai, and Tomohiko Furuhata. 2021. "Temperature and Chemical Reaction Distribution of a Laminar Diffusion Flame Measured by X-ray Compton Scattering" Crystals 11, no. 7: 787. https://doi.org/10.3390/cryst11070787
APA StyleSakurai, H., Tsuji, N., Zama, Y., Suzuki, K., Hoshi, K., Hiramoto, D., Sakurai, Y., & Furuhata, T. (2021). Temperature and Chemical Reaction Distribution of a Laminar Diffusion Flame Measured by X-ray Compton Scattering. Crystals, 11(7), 787. https://doi.org/10.3390/cryst11070787