Recent Advances in Graphene and Conductive Polymer Composites for Supercapacitor Electrodes: A Review
Abstract
:1. Introduction
2. Binary Composites
2.1. Graphene/PANI Composites
2.2. Graphene/PPy Composites
2.3. Graphene/Pind Composites
2.4. Comparison and Summary
3. Ternary Composites
4. Quaternary Composites
5. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, S.; Zhao, Z.; Yang, Z.; Ke, L.; Kitipornchai, S.; Yang, J. Functionally graded graphene reinforced composite structures: A review. Eng. Struct. 2020, 210, 110339. [Google Scholar] [CrossRef]
- Xia, C.; Shahedi Asl, M.; Sabahi Namini, A.; Ahmadi, Z.; Delbari, S.A.; Le, Q.V.; Shokouhimehr, M.; Mohammadi, M. Enhanced fracture toughness of ZrB2–SiCw ceramics graphene nano-platelets. Ceram. Int. 2020, 46, 24906–24915. [Google Scholar] [CrossRef]
- Vajdi, M.; Moghanlou, F.S.; Nekahi, S.; Ahmadi, Z.; Motallebzadeh, A.; Jafarzadeh, H.; Asl, M.S. Role of graphene nano-platelets on thermal conductivity and microstructure of TiB2-SiC ceramics. Ceram. Int. 2020, 46, 21775–21783. [Google Scholar] [CrossRef]
- Tajik, S.; Dourandish, Z.; Zhang, K.; Beitollahi, H.; Le, Q.V.; Jang, H.W.; Shokouhimehr, M. Carbon and graphene quantum dots: A review on syntheses, characterization, biological and sensing applications for neurotransmitter determination. RSC Adv. 2020, 1, 15406–15429. [Google Scholar] [CrossRef] [Green Version]
- Jiao, D.; Zheng, A.; Liu, Y.; Zhang, X.; Wang, X.; Wu, J.; She, W.; Lv, K.; Cao, L.; Jiang, X. Bidirectional differentiation of BMSCs induced by a biomimetic procallus based on a gelatin-reduced graphene oxide reinforced hydrogel for rapid bone regeneration. Bioact. Mater. 2021, 6, 2011–2028. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Mi, X.; Li, Y.; Zhan, S. 3D Graphene-Based Macrostructures for Water Treatment. Adv. Mater. 2019, 32, 1806843. [Google Scholar] [CrossRef]
- Katubi, K.M.M.; Alsaiari, N.S.; Alzahrani, F.M.; M Siddeeg, S.; A Tahoon, M. Synthesis of Manganese Ferrite/Graphene Oxide Magnetic Nanocomposite for Pollutants Removal from Water. Processes 2021, 9, 589. [Google Scholar] [CrossRef]
- Du, Y.; Xiao, P.; Yuan, J.; Chen, J. Research Progress of Graphene-Based Materials on Flexible Supercapacitors. Coatings 2020, 10, 892. [Google Scholar] [CrossRef]
- Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R.K.; Maegawa, K.; Tan, W.K.; Kawamura, G.; Kar, K.K.; Matsuda, A. Heteroatom doped graphene engineering for energy storage and conversion. Mater. Today 2020, 39, 47–65. [Google Scholar] [CrossRef]
- Palmieri, V.; Papi, M. Can graphene take part in the fight against COVID-19? Nano Today 2020, 33, 100883. [Google Scholar] [CrossRef]
- Seifi, T.; Reza Kamali, A. Antiviral performance of graphene-based materials with emphasis on COVID-19: A review. Med. Drug Discov. 2021, 11, 100099. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Ni, M.; Ren, X.; Tian, Y.; Li, N.; Su, Y.; Zhang, X. Graphene in Supercapacitor Applications. Curr. Opin. Colloid Interface Sci. 2015, 20, 416–428. [Google Scholar] [CrossRef]
- Wang, B.; Ruan, T.; Chen, Y.; Jin, F.; Peng, L.; Zhou, Y.; Wang, D.; Dou, S. Graphene-based composites for electrochemical energy storage. Energy Storage Mater. 2020, 24, 22–51. [Google Scholar] [CrossRef]
- Huang, Z.; Li, L.; Wang, Y.; Zhang, C.; Liu, T. Polyaniline/graphene nanocomposites towards high-performance supercapacitors: A review. Compos. Commun. 2018, 8, 83–91. [Google Scholar] [CrossRef]
- Chen, S.; Qiu, L.; Cheng, H. Carbon-Based Fibers for Advanced Electrochemical Energy Storage Devices. Chem. Rev. 2020, 120, 2811–2878. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhao, H.; Lei, Y. Review on Nanoarchitectured Current Collectors for Pseudocapacitors. Small Methods 2019, 3, 1800341. [Google Scholar] [CrossRef]
- Seman, R.N.A.R.; Azam, M.A.; Ani, M.H. Graphene/transition metal dichalcogenides hybrid supercapacitor electrode: Status, challenges, and perspectives. Nanotechnology 2018, 29, 502001. [Google Scholar] [CrossRef]
- Wang, M.; Xu, Y. Design and construction of three-dimensional graphene/conducting polymer for supercapacitors. Chin. Chem. Lett. 2016, 27, 1437–1444. [Google Scholar] [CrossRef]
- Wang, Y.; Xia, Y. Recent Progress in Supercapacitors: From Materials Design to System Construction. Adv. Mater. 2013, 25, 5336–5342. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Myung, Y.; Das, G.S.; Bhatnagar, A.; Park, J.; Tripathi, K.M.; Kim, T. Carbon nano-onions from waste oil for application in energy storage devices. New J. Chem. 2020, 44, 7369–7375. [Google Scholar] [CrossRef]
- Thirumal, V.; Dhamodharan, K.; Yuvakkumar, R.; Ravi, G.; Saravanakumar, B.; Thambidurai, M.; Dang, C.; Velauthapillai, D. Cleaner production of tamarind fruit shell into bio-mass derived porous 3D-activated carbon nanosheets by CVD technique for supercapacitor applications. Chemosphere 2021, 282, 131033. [Google Scholar] [CrossRef]
- Yang, Z.; Tian, J.; Yin, Z.; Cui, C.; Qian, W.; Wei, F. Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review. Carbon 2019, 141, 467–480. [Google Scholar] [CrossRef]
- Peigney, A.; Laurent, C.; Flahaut, E.; Bacsa, R.R.; Rousset, A. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 2001, 39, 507–514. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Shin, Y.; Lee, J.; Bae, E.; Jeon, Y.; Jeong, C.; Yun, M.; Lee, S.; Han, D.; Huh, J. The Effect of Reduced Graphene Oxide-Coated Biphasic Calcium Phosphate Bone Graft Material on Osteogenesis. Int. J. Mol. Sci. 2017, 18, 1725. [Google Scholar] [CrossRef] [PubMed]
- Ban, F.Y.; Majid, S.R.; Huang, N.M.; Lim, H.N. Graphene Oxide and Its Electrochemical Performance. Int. J. Electrochem. Sci. 2012, 7, 4345–4351. [Google Scholar]
- Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S.I.; Seal, S. Graphene based materials: Past, present and future. Prog. Mater. Sci. 2011, 56, 1178–1271. [Google Scholar] [CrossRef]
- Gao, Y.; Han, B.; Zhao, W.; Ma, Z.; Yu, Y.; Sun, H. Light-Responsive Actuators Based on Graphene. Front. Chem. 2019, 7, 506. [Google Scholar] [CrossRef] [PubMed]
- Gadgil, B.; Damlin, P.; Kvarnstrom, C. Graphene vs. reduced graphene oxide: A comparative study of graphene-based nanoplatforms on electrochromic switching kinetics. Carbon 2016, 96, 377–381. [Google Scholar] [CrossRef]
- Oh, H.M.; Kim, H.; Kim, H.; Jeong, M.S. Fabrication of Stacked MoS2 Bilayer with Weak Interlayer Coupling by Reduced Graphene Oxide Spacer. Sci. Rep. 2019, 9, 5900. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H.; Li, C.; Wang, K.; Sun, X.; Ma, Y. Recent advances in porous graphene materials for supercapacitor applications. RSC Adv. 2014, 4, 45862–45884. [Google Scholar] [CrossRef]
- El-Kady, M.F.; Strong, V.; Dubin, S.; Kaner, R.B. Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors. Science 2012, 335, 1326–1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoller, M.D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R.S. Graphene-Based Ultracapacitors. Nano Lett. 2008, 8, 3498–3502. [Google Scholar] [CrossRef]
- Nanaji, K.; Sarada, B.V.; Varadaraju, U.V.; Rao, T.N.; Anandan, S. A novel approach to synthesize porous graphene sheets by exploring KOH as pore inducing agent as well as a catalyst for supercapacitors with ultra-fast rate capability. Renew. Energy 2021, 172, 502–513. [Google Scholar] [CrossRef]
- Yoon, Y.; Lee, K.; Kwon, S.; Seo, S.; Yoo, H.; Kim, S.; Shin, Y.; Park, Y.; Kim, D.; Choi, J.; et al. Vertical Alignments of Graphene Sheets Spatially and Densely Piled for Fast Ion Diffusion in Compact Supercapacitors. ACS Nano 2014, 8, 4580–4590. [Google Scholar] [CrossRef]
- Li, P.; Li, H.; Zhang, X.; Zheng, X. Facile fabrication and improved supercapacitive performance of exfoliated graphene with hierarchical porous structure. J. Energy Storage 2021, 33, 102044. [Google Scholar] [CrossRef]
- Wang, C.; Liu, F.; Chen, J.; Yuan, Z.; Liu, C.; Zhang, X.; Xu, M.; Wei, L.; Chen, Y. A graphene-covalent organic framework hybrid for high-performance supercapacitors. Energy Storage Mater. 2020, 32, 448–457. [Google Scholar] [CrossRef]
- Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279. [Google Scholar] [CrossRef]
- Fleischmann, S.; Mitchell, J.B.; Wang, R.C.; Zhan, C.; Jiang, D.E.; Presser, V.; Augustyn, V. Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chem. Rev. 2020, 120, 6738–6782. [Google Scholar] [CrossRef] [PubMed]
- Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597–1614. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, B.; Veerappan, M.; Rajan, K.; Chen, Z.; Hu, C.; Wang, F.; Wang, F.; Yang, M. Fabrication of Hierarchical Indium Vanadate Materials for Supercapacitor Application. Glob. Chall. 2020, 4, 2000002. [Google Scholar] [CrossRef]
- González, A.; Goikolea, E.; Barrena, J.A.; Mysyk, R. Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev. 2016, 58, 1189–1206. [Google Scholar] [CrossRef]
- Liu, G.; Shi, Y.; Wang, L.; Song, Y.; Gao, S.; Liu, D.; Fan, L. Reduced graphene oxide/polypyrrole composite: An advanced electrode for high-performance symmetric/asymmetric supercapacitor. Carbon Lett. 2020, 30, 389–397. [Google Scholar] [CrossRef]
- Vannathan, A.A.; Kella, T.; Shee, D.; Mal, S.S. One-Pot Synthesis of Polyoxometalate Decorated Polyindole for Energy Storage Supercapacitors. ACS Omega 2021, 6, 11199–11208. [Google Scholar] [CrossRef]
- Lee, B.H.; Lee, J.; Kahng, Y.H.; Kim, N.; Kim, Y.J.; Lee, J.; Lee, T.; Lee, K. Graphene-conducting polymer hybrid transparent electrodes for efficient organic optoelectronic devices. Adv. Funct. Mater. 2014, 24, 1847–1856. [Google Scholar] [CrossRef]
- Yong, Y.; Dong, X.; Chan-Park, M.B.; Song, H.; Chen, P. Macroporous and monolithic anode based on polyaniline hybridized Three-dimensional graphene for high-performance microbial fuel cells. ACS Nano 2012, 6, 2394–2400. [Google Scholar] [CrossRef] [PubMed]
- Hur, J.; Park, S.; Bae, J. Elaborate chemical sensors based on graphene/conducting polymer hybrids. Curr. Org. Chem. 2015, 19, 1117–1133. [Google Scholar] [CrossRef]
- Shen, F.; Pankratov, D.; Chi, Q. Graphene-conducting polymer nanocomposites for enhancing electrochemical capacitive energy storage. Curr. Opin. Electrochem. 2017, 4, 133–144. [Google Scholar] [CrossRef] [Green Version]
- Mo, Y.; Meng, W.; Xia, Y.; Du, X. Redox-Active Gel Electrolyte Combined with Branched Polyaniline Nanofibers Doped with Ferrous Ions for Ultra-High-Performance Flexible Supercapacitors. Polymers 2019, 11, 1357. [Google Scholar] [CrossRef] [Green Version]
- Ajpi, C.; Leiva, N.; Vargas, M.; Lundblad, A.; Lindbergh, G.; Cabrera, S. Synthesis and Characterization of LiFePO4–PANI Hybrid Material as Cathode for Lithium-Ion Batteries. Materials 2020, 13, 2834. [Google Scholar] [CrossRef]
- Niu, Z.; Luan, P.; Shao, Q.; Dong, H.; Li, J.; Chen, J.; Zhao, D.; Cai, L.; Zhou, W.; Chen, X.; et al. A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes. Energy Environ. Sci. 2012, 5, 8726–8733. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Li, G.; Ye, S.; Gao, X. A Polyaniline-Coated Sulfur/Carbon Composite with an Enhanced High-Rate Capability as a Cathode Material for Lithium/Sulfur Batteries. Adv. Energy Mater. 2012, 2, 1238–1245. [Google Scholar] [CrossRef]
- Banerjee, J.; Dutta, K.; Kader, M.A.; Nayak, S.K. An overview on the recent developments in polyaniline-based supercapacitors. Polym. Adv. Technol. 2019, 30, 1902–1921. [Google Scholar] [CrossRef]
- Hao, Q.; Wang, H.; Yang, X.; Lu, L.; Wang, X. Morphology-controlled fabrication of sulfonated graphene/polyaniline nanocomposites by liquid/liquid interfacial polymerization and investigation of their electrochemical properties. Nano Res. 2011, 4, 323–333. [Google Scholar] [CrossRef]
- Zhao, Y.; Arowo, M.; Wu, W.; Zou, H.; Chen, J.; Chu, G. Polyaniline/graphene nanocomposites synthesized by in situ high gravity chemical oxidative polymerization for supercapacitor. J. Ind. Eng. Chem. 2015, 25, 280–287. [Google Scholar] [CrossRef]
- Feng, X.; Li, R.; Ma, Y.; Chen, R.; Shi, N.; Fan, Q.; Huang, W. One-Step Electrochemical Synthesis of Graphene/Polyaniline Composite Film and Its Applications. Adv. Funct. Mater. 2011, 21, 2989–2996. [Google Scholar] [CrossRef]
- Gul, H.; Shah, A.A.; Krewer, U.; Bilal, S. Study on Direct Synthesis of Energy Efficient Multifunctional Polyaniline–Graphene Oxide Nanocomposite and Its Application in Aqueous Symmetric Supercapacitor Devices. Nanomaterials 2020, 10, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, C.; Zhang, X.; Yu, Y.; Huang, L.; Li, J.; Wu, Y.; Liu, Z. An ionic liquid-modified RGO/polyaniline composite for high-performance flexible all-solid-state supercapacitors. Chem. Commun. 2020, 56, 11993–11996. [Google Scholar] [CrossRef]
- Gholami Laelabadi, K.; Moradian, R.; Manouchehri, I. One-Step Fabrication of Flexible, Cost/Time Effective, and High Energy Storage Reduced Graphene Oxide@PANI Supercapacitor. ACS Appl. Energy Mater. 2020, 3, 5301–5312. [Google Scholar] [CrossRef]
- Moyseowicz, A.; Gryglewicz, G. Hydrothermal-assisted synthesis of a porous polyaniline/reduced graphene oxide composite as a high-performance electrode material for supercapacitors. Compos. Part B Eng. 2019, 159, 4–12. [Google Scholar] [CrossRef]
- Snook, G.A.; Kao, P.; Best, A.S. Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 2011, 196, 1–12. [Google Scholar] [CrossRef]
- Afzal, A.; Abuilaiwi, F.A.; Habib, A.; Awais, M.; Waje, S.B.; Atieh, M.A. Polypyrrole/carbon nanotube supercapacitors: Technological advances and challenges. J. Power Sources 2017, 352, 174–186. [Google Scholar] [CrossRef]
- Choudhary, R.B.; Ansari, S.; Purty, B. Robust electrochemical performance of polypyrrole (PPy) and polyindole (PIn) based hybrid electrode materials for supercapacitor application: A review. J. Energy Storage 2020, 29, 101302. [Google Scholar] [CrossRef]
- Meng, Q.; Cai, K.; Chen, Y.; Chen, L. Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 2017, 36, 268–285. [Google Scholar] [CrossRef]
- Sadki, S.; Schottland, P.; Brodie, N.; Sabouraud, G. The mechanisms of pyrrole electropolymerization. Chem. Soc. Rev. 2000, 29, 283–293. [Google Scholar]
- Shi, W.; Han, G.; Chang, Y.; Song, H.; Hou, W.; Chen, Q. Using Stretchable PPy@PVA Composites as a High-Sensitivity Strain Sensor To Monitor Minute Motion. ACS Appl. Mater. Interfaces 2020, 12, 45373–45382. [Google Scholar] [CrossRef] [PubMed]
- Abu Elella, M.H.; Goda, E.S.; Yoon, K.R.; Hong, S.E.; Morsy, M.S.; Sadak, R.A.; Gamal, H. Novel vapor polymerization for integrating flame retardant textile with multifunctional properties. Compos. Commun. 2021, 24, 100614. [Google Scholar] [CrossRef]
- Sultana, I.; Rahman, M.M.; Wang, J.; Wang, C.; Wallace, G.G.; Liu, H. Indigo carmine (IC) doped polypyrrole (PPy) as a free-standing polymer electrode for lithium secondary battery application. Solid State Ion. 2012, 215, 29–35. [Google Scholar] [CrossRef]
- Wen, J.; Ding, Y.; Zhong, J.; Chen, R.; Gao, F.; Qiao, Y.; Fu, C.; Wang, J.; Shen, L.; He, H. Ice-interface assisted large-scale preparation of polypyrrole/graphene oxide films for all-solid-state supercapacitors. RSC Adv. 2020, 10, 41503–41510. [Google Scholar] [CrossRef]
- Feng, H.; Wang, B.; Tan, L.; Chen, N.; Wang, N.; Chen, B. Polypyrrole/hexadecylpyridinium chloride-modified graphite oxide composites: Fabrication, characterization, and application in supercapacitors. J. Power Sources 2014, 246, 621–628. [Google Scholar] [CrossRef]
- Ghanbari, R.; Shabestari, M.E.; Kalali, E.N.; Hu, Y.; Ghorbani, S.R. Electrochemical performance and complex impedance properties of reduced-graphene oxide/polypyrrole nanofiber nanocomposite. Ionics 2021, 27, 1279–1290. [Google Scholar] [CrossRef]
- Gómez Costa, M.B.; Juárez, J.M.; Martínez, M.L.; Cussa, J.; Anunziata, O.A. Synthesis and characterization of a novel composite: Polyindole included in nanostructured Al-MCM-41 material. Microporous Mesoporous Mater. 2012, 153, 191–197. [Google Scholar] [CrossRef]
- Gupta, B.; Chauhan, D.S.; Prakash, R. Controlled morphology of conducting polymers: Formation of nanorods and microspheres of polyindole. Mater. Chem. Phys. 2010, 120, 625–630. [Google Scholar] [CrossRef]
- Tebyetekerwa, M.; Wang, X.; Marriam, I.; Dan, P.; Yang, S.; Zhu, M. Green approach to fabricate Polyindole composite nanofibers for energy and sensor applications. Mater. Lett. 2017, 209, 400–403. [Google Scholar] [CrossRef]
- Dhanalakshmi, K.; Saraswathi, R. Electrochemical preparation and characterization of conducting copolymers: Poly(pyrrole-co-indole). J. Mater. Sci. 2001, 36, 4107–4115. [Google Scholar] [CrossRef]
- Marriam, I.; Wang, Y.; Tebyetekerwa, M. Polyindole batteries and supercapacitors. Energy Storage Mater. 2020, 33, 336–359. [Google Scholar] [CrossRef]
- Mudila, H.; Rana, S.; Zaidi, M.G.H.; Alam, S. Polyindole/Graphene Oxide Nanocomposites: The Novel Material for Electrochemical Energy Storage. Fuller. Nanotub. Carbon Nanostruct. 2015, 23, 20–26. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhu, D.; Ma, X.; Xu, J.; Zhou, W.; Zhao, F. High-performance capacitive behavior of layered reduced graphene oxide and polyindole nanocomposite materials. RSC Adv. 2016, 6, 29840–29847. [Google Scholar] [CrossRef]
- Gao, Y. Graphene and Polymer Composites for Supercapacitor Applications: A Review. Nanoscale Res. Lett. 2017, 12, 387. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, Y.; Li, Y.; Liu, J. Construction of High-Capacitance 3D CoO@Polypyrrole Nanowire Array Electrode for Aqueous Asymmetric Supercapacitor. Nano Lett. 2013, 13, 2078–2085. [Google Scholar] [CrossRef]
- Liu, M.; Miao, Y.E.; Zhang, C.; Tjiu, W.W.; Yang, Z.; Peng, H.; Liu, T. Hierarchical composites of polyaniline-graphene nanoribbons-carbon nanotubes as electrode materials in all-solid-state supercapacitors. Nanoscale 2013, 5, 7312–7320. [Google Scholar] [CrossRef]
- Murugan, A.V.; Muraliganth, T.; Manthiram, A. Rapid, Facile Microwave-Solvothermal Synthesis of Graphene Nanosheets and Their Polyaniline Nanocomposites for Energy Strorage. Chem. Mater. 2009, 21, 5004–5006. [Google Scholar] [CrossRef]
- Hassan, M.; Reddy, K.R.; Haque, E.; Faisal, S.N.; Ghasemi, S.; Minett, A.I.; Gomes, V.G. Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode. Compos. Sci. Technol. 2014, 98, 1–8. [Google Scholar] [CrossRef]
- Huang, Y.; Tao, J.; Meng, W.; Zhu, M.; Huang, Y.; Fu, Y.; Gao, Y.; Zhi, C. Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability. Nano Energy 2015, 11, 518–525. [Google Scholar] [CrossRef]
- Biswas, S.; Drzal, L.T. Multilayered Nanoarchitecture of Graphene Nanosheets and Polypyrrole Nanowires for High Performance Supercapacitor Electrodes. Chem. Mater. 2010, 22, 5667–5671. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Ma, G.; Wang, Z.; Liu, K.; Liu, H. Ethylene glycol reduced graphene oxide/polypyrrole composite for supercapacitor. Electrochim. Acta 2013, 88, 519–525. [Google Scholar] [CrossRef]
- Majumder, M.; Choudhary, R.B.; Koiry, S.P.; Thakur, A.K.; Kumar, U. Gravimetric and volumetric capacitive performance of polyindole/carbon black/MoS2 hybrid electrode material for supercapacitor applications. Electrochim. Acta 2017, 248, 98–111. [Google Scholar] [CrossRef]
- Azizi, E.; Arjomandi, J.; Salimi, A.; Lee, J.Y. Fabrication of an asymmetric supercapacitor based on reduced graphene oxide/polyindole/gamma—Al2O3 ternary nanocomposite with high-performance capacitive behavior. Polymer 2020, 195, 122429. [Google Scholar] [CrossRef]
- Wang, H.; Liu, R.; Liu, X.; Wu, L.; Li, Y.; Zhang, X. Improved Electrochemical Performances of Graphene Hybrids Embedded with Silica as the Functional Connection Layer for Supercapacitors. J. Energy Storage 2021, 36, 102315. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, Z.; Yin, H.; Hou, S.; Lin, H.; Zhou, J.; Zhuo, S. Investigation on the role of different conductive polymers in supercapacitors based on a zinc sulfide/reduced graphene oxide/conductive polymer ternary composite electrode. RSC Adv. 2020, 10, 3122–3129. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, S.; Yadav, H.; Bathula, C.; Shinde, S.; Sivasamy, A.; Kim, H.; Kim, H.S.; Kim, J. Cubic nanostructure of Co3O4@nitrogen doped graphene oxide/polyindole composite efficient electrodes for high performance energy storage applications. J. Mater. Res. Technol. 2020, 9, 11464–11475. [Google Scholar] [CrossRef]
- Ehsani, A.; Heidari, A.A.; Shiri, H.M. Electrochemical pseudocapacitors based on ternary nanocomposite of conductive polymer/graphene/metal oxide: An introduction and review to it in recent studies. Chem. Rec. 2019, 19, 908–926. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Chen, Z.; Yang, D.; Lu, H. Hierarchically structured graphene-based supercapacitor electrodes. RSC Adv. 2013, 3, 21183–21191. [Google Scholar] [CrossRef]
- Dywili, N.R.; Ntziouni, A.; Ikpo, C.; Ndipingwi, M.; Hlongwa, N.W.; Yonkeu, A.; Masikini, M.; Kordatos, K.; Iwuoha, E.I. Graphene Oxide Decorated Nanometal-Poly(Anilino-Dodecylbenzene Sulfonic Acid) for Application in High Performance Supercapacitors. Micromachines 2019, 10, 115. [Google Scholar] [CrossRef] [Green Version]
- Golkhatmi, S.Z.; Sedghi, A.; Miankushki, H.N.; Khalaj, M. Structural properties and supercapacitive performance evaluation of the nickel oxide/graphene/polypyrrole hybrid ternary nanocomposite in aqueous and organic electrolytes. Energy 2021, 214, 118950. [Google Scholar] [CrossRef]
- Li, S.; Zhang, L.; Zhang, L.; Zhang, J.; Zhou, H.; Chen, X.; Tang, T. The in situ construction of three-dimensional core-shell-structured TiO2@PPy/rGO nanocomposites for improved supercapacitor electrode performance. New J. Chem. 2021, 45, 1092–1099. [Google Scholar] [CrossRef]
- Golikand, A.N.; Bagherzadeh, M.; Shirazi, Z. Evaluation of the Polyaniline Based Nanocomposite Modified with Graphene Nanosheet, Carbon Nanotube, and Pt Nanoparticle as a Material for Supercapacitor. Electrochim. Acta 2017, 247, 116–124. [Google Scholar] [CrossRef]
- Gottam, R.; Srinivasan, P. Composite electrode material of MoO3-MC-SiO2-PANI: Aqueous supercapacitor cell with high energy density, 1 V and 250,000 CD cycles. Polym. Adv. Technol. 2021, 32, 2465–2475. [Google Scholar] [CrossRef]
- Wang, X.; Wu, D.; Song, X.; Du, W.; Zhao, X.; Zhang, D. Review on Carbon/Polyaniline Hybrids: Design and Synthesis for Supercapacitor. Molecules 2019, 24, 2263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Materials | Electrolyte | Testing | Capacitance | Capacitance Retention | Year | References |
---|---|---|---|---|---|---|
PANI | PVA/H3PO4 | Two-electrode | 283 F g−1 at 0.5 A g−1 | - | 2013 | [80] |
PANI/graphene | 1 M H2SO4 | 408 F g−1 at 5 mV s−1 | 84% after 40 cycles | 2009 | [81] | |
PANI/GO | 0.5 M H2SO4 | Three-electrode | 448 F g−1 at 0.5 A g−1 | 81% after 5000 cycles | 2014 | [82] |
PANI/RGO-HT | 1 M H2SO4 | Three-electrode | 420 F g−1 at 0.2 A g−1 | 80% after 6000 cycles | 2018 | [59] |
PANI/GO | 1.1 M H2SO4 | Three-electrode | 658 F g−1 at 10 A g−1 | 84.09% after 2000 cycles | 2019 | [56] |
PPy | PVA/H3PO4 | Two-electrode | 170 F g−1 at 0.5 A g−1 | - | 2014 | [83] |
PPy/graphene | 1 M NaCl | 165 F g−1 at 1 A g−1 | - | 2010 | [84] | |
PPy/GO | PVA/H3PO4 | Three-electrode | 97.3 mF cm−2 at 1 mA cm−2 | 94% after 1000 cycles | 2020 | [68] |
PPy/MGO | 2 M NaNO3 | Three-electrode | 202 F g−1 at 1 A g−1 | 83.8% after 1000 cycles | 2013 | [69] |
PPy/GO | 2 M NaNO3 | Three-electrode | 137 F g−1 at 1 A g−1 | - | 2013 | [69] |
EG-RGO/PPy | 1 M H2SO4 | Three-electrode | 420 F g−1 at 0.5 A g−1 240 F g−1 at 5 A g−1 | 93% after 200 cycles at 1 A g−1 | 2013 | [85] |
RGO/PPy-Nf | 1 M H2SO4 | Two-electrode | 277 F g−1 at 1 A g−1 | 95% after 1000 cycles | 2021 | [70] |
Pind | 1 M H2SO4 | Three-electrode | 112 F g−1 at 1 A g−1 | 82.3% after 5000 cycles at 10 A g−1 | 2017 | [86] |
Pind/GO | 1 M KOH | Three-electrode | 399.97 F g−1 at 1 mV S−1 | 99% after 50 cycles at 0.1 V S−1 | 2015 | [76] |
Pind/RGO | 1 M H2SO4 | Three-electrode | 322.8 F g−1 at 1 A g−1 | 94.5% after 1000 cycles | 2016 | [77] |
Pind/RGO | 1 M HClO4 | Three-electrode | 214 F g−1 at 5 A g−1 | 62% after 5000 cycles | 2020 | [87] |
Materials | Electrolyte | Testing | Capacitance | Capacitance Retention | Year | References |
---|---|---|---|---|---|---|
GO/Pt/DBSA-PANI | 1 M H2SO4 | Three-electrode | 227.2 F g−1 at 0.9 mV S−1 | 96% after 1500 cycles | 2019 | [93] |
ZnS/RGO/PANI | 6 M KOH | Two-electrode | 722 F g−1 at 1 A g−1 | 76.1% after 1000 cycles | 2020 | [89] |
ZnS/RGO/PPy | 6 M KOH | Two-electrode | 613.8 F g−1 at 1 A g−1 | 50% after 1000 cycles | 2020 | [89] |
NiO/Gr/PPy | 6 M KOH | Three-electrode | 970.85 F g−1 at 1 A g−1 | - | 2020 | [94] |
RGO/Pind/gammer-Al2O3 | 1.0 M HClO4 | Three-electrode | 308 F g−1 at 5 A g−1 | 83% after 5000 cycles | 2020 | [87] |
Co3O4@NGO/polyindole | 2 M KOH | Three-electrode | ~680 F g−1 at 0.5 A g−1 | 96% after 3000 cycles | 2020 | [90] |
TiO2@PPy/rGO | 2 M KOH | Three-electrode | 462.1 F g−1 at 0.5 A g−1 | 70% after 1500 cycles | 2021 | [95] |
SiO2/graphene/PANI | 1 M H2SO4 | Three-electrode | 727 F g−1 | 90% after 3500 cycles | 2021 | [88] |
Materials | Electrolyte | Testing | Capacitance | Capacitance Retention | Year | References |
---|---|---|---|---|---|---|
PANI/GNS/CNT/Pt | 1 M H2SO4 | Two-electrode | 3450 C g−1 at 4.0 μA S−1 | 84.8% after 1000 cycles | 2017 | [96] |
PANI/GNS/CNT | 1 M H2SO4 | Two-electrode | 952 C g−1 at 4.0 μA S−1 | 63% after 1000 cycles | 2017 | [96] |
PANI/GNT/Pt | 1 M H2SO4 | Two-electrode | 366 C g−1 at 4.0 μA S−1 | 38.9% after 1000 cycles | 2017 | [96] |
PANI/GNS/Pt | 1 M H2SO4 | Two-electrode | 1123 C g−1 at 4.0 μA S−1 | 36.3% after 1000 cycles | 2017 | [96] |
MoO3–MC–SiO2–PANI | 1 M H2SO4 | Two-electrode | 535 F g−1 at 1 mV S−1 | 57% after 250,000 cycles at 16.6 A g−1 | 2021 | [97] |
MC–SiO2–PANI | 1 M H2SO4 | Two-electrode | 410 F g−1 at 1 mV S−1 | - | 2021 | [97] |
MoO3–MC–SiO2 | 1 M H2SO4 | Two-electrode | 80 F g−1 at 1 mV S−1 | - | 2021 | [97] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, X.; Sun, K.; Qiu, Y.; Jiao, X. Recent Advances in Graphene and Conductive Polymer Composites for Supercapacitor Electrodes: A Review. Crystals 2021, 11, 947. https://doi.org/10.3390/cryst11080947
Cai X, Sun K, Qiu Y, Jiao X. Recent Advances in Graphene and Conductive Polymer Composites for Supercapacitor Electrodes: A Review. Crystals. 2021; 11(8):947. https://doi.org/10.3390/cryst11080947
Chicago/Turabian StyleCai, Xinwei, Kangkang Sun, Yangshuai Qiu, and Xuan Jiao. 2021. "Recent Advances in Graphene and Conductive Polymer Composites for Supercapacitor Electrodes: A Review" Crystals 11, no. 8: 947. https://doi.org/10.3390/cryst11080947
APA StyleCai, X., Sun, K., Qiu, Y., & Jiao, X. (2021). Recent Advances in Graphene and Conductive Polymer Composites for Supercapacitor Electrodes: A Review. Crystals, 11(8), 947. https://doi.org/10.3390/cryst11080947