Enhanced Photoresponsivity of 2H-MoTe2 by Inserting 1T-MoTe2 Interlayer Contact for Photodetector Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Statuber, T.; Prers, N.M.R.; Geim, A.K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef] [Green Version]
- Echtermeyer, T.J.; Britnell, L.; Jasnos, P.K.; Lombardo, A.; Gorbachev, R.V.; Grigorenko, A.N.; Geim, A.K.; Ferrari, A.C.; Novoselov, K.S. Strong plasmonic enhancement of photovoltage in graphene. Nat. Commun. 2011, 2, 458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoffe, A.D. Electronic Properties of Two Dimensional Solids: The Layer Type Transition Metal Dichalcogenides. Festkörper Probl. 1973, 13, 1–29. [Google Scholar]
- Yoffe, A.D. Electronic properties of low dimensional solids: The physics and chemistry of layer type transition metal dichalcogenides and their intercalate complexes. Solid State Ion. 1990, 39, 1–7. [Google Scholar] [CrossRef]
- Wilson, J.A.; Yoffe, A.D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 1969, 18, 193–335. [Google Scholar] [CrossRef]
- Ganatra, R.; Zhang, Q. Few-layer MoS2: A promising layered semiconductor. ACS Nano 2014, 8, 4074–4099. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotech. 2012, 7, 699–712. [Google Scholar] [CrossRef]
- Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotech 2011, 6, 147–150. [Google Scholar] [CrossRef]
- Lan, Y.W.; Chen, P.C.; Lin, Y.Y.; Li, M.Y.; Li, L.J.; Tu, Y.L.; Yang, F.L.; Chen, M.C.; Li, K.S. Scalable fabrication of a complementary logic inverter based on MoS2 fin-shaped field effect transistors. Nanoscale Horiz. 2019, 4, 683–688. [Google Scholar] [CrossRef]
- Nourbakhsh, A.; Zubair, A.; Sajjad, R.N.; Amir Tavakkoli, K.G.; Chen, W.; Fang, S.; Ling, X.; Kong, J.; Dresselhaus, M.S.; Kaxiras, E.; et al. MoS2 field-effect transistor with sub-10 nm channel length. Nano Lett. 2016, 16, 7798–7806. [Google Scholar] [CrossRef]
- Tosun, M.; Chuang, S.; Fang, H.; Sachid, A.B.; Hettick, M.; Lin, Y.; Zeng, Y.; Javey, A. High-gain inverters based on WSe2 complementary field-effect transistors. ACS Nano 2014, 8, 4948–4953. [Google Scholar] [CrossRef]
- Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.; Rooney, A.P.; Gholinia, A.; Watanabe, K.; Taniguchi, T.; Haigh, S.J.; Geim, A.K.; Tartakovskii, A.I.; et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 2015, 14, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Li, M.Y.; Shi, Y.; Cheng, C.C.; Lu, L.S.; Lin, Y.C.; Tang, H.L. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 2015, 349, 524–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mak, K.F.; Lee, C.; Hone, J.; Shen, J.; Heinz, T.F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Chang, T.R.; Zhou, B.; Cui, Y.T.; Yan, H.; Liu, Z.; Schmitt, F.; Lee, J.; Moore, R.; Chen, Y.; et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotech. 2014, 9, 111–115. [Google Scholar] [CrossRef]
- Yun, W.S.; Han, S.W.; Hong, S.C.; Kim, I.G.; Lee, J.D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 2012, 85, 033305. [Google Scholar] [CrossRef]
- Ruppert, C.; Aslan, O.B.; Heinz, T.F. Optical properties and band gap of single- and few-layer MoTe2. Nano Lett. 2014, 14, 6231–6236. [Google Scholar] [CrossRef]
- Empante, T.A.; Zhou, Y.; Klee, V.; Nguyen, A.E.; Lu, I.H.; Valentin, M.D.; Naghibi Alvillar, A.A.; Preciado, E.; Berges, A.J.; Merida, C.S.; et al. Chemical Vapor Deposition Growth of Few-Layer MoTe2 in the 2H, 1T’, and 1T Phases: Tunable Properties of MoTe2 Films. ACS Nano 2017, 11, 900–905. [Google Scholar] [CrossRef]
- Qi, Y.; Naumov, P.; Ali, M.N.; Rajamathi, C.R.; Schnelle, W.; Barkalov, O.; Hanfland, M.; Wu, S.C.; Shekhar, C.; Sun, Y.; et al. Superconductivity in Weyl semimetal candidate MoTe2. Nat. Commun. 2016, 7, 11038. [Google Scholar] [CrossRef] [Green Version]
- Deng, K.; Wan, G.; Deng, P.; Zhang, K.; Ding, S.; Wang, E.; Yan, M.; Huang, H.; Zhang, H.; Xu, Z.; et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2. Nat. Phys. 2016, 12, 1105–1110. [Google Scholar] [CrossRef]
- Liu, X.; Islam, A.; Guo, J.; Feng, P.X.L. Controlling polarity of MoTe2 transistors for monolithic complementary logic via Schottky contact engineering. ACS Nano 2020, 14, 1457–1467. [Google Scholar] [CrossRef]
- Chang, Y.M.; Yang, S.H.; Lin, C.Y.; Chen, C.H.; Lien, C.H.; Jian, W.B.; Ueno, K.; Suen, Y.W.; Tsukagoshi, K.; Lin, Y.F. Reversible and precisely controllable p/n-type doping of MoTe2 transistors through electrothermal doping. Adv. Mater. 2018, 30, 1706995. [Google Scholar] [CrossRef]
- Lin, Y.F.; Xu, Y.; Wang, S.T.; Li, S.L.; Yamamoto, M.; Aparecido-Ferreira, A.; Li, W.; Sun, H.; Nakaharai, S.; Jian, W.B.; et al. Ambipolar MoTe2 transistors and their applications in logic circuits. Adv. Mater. 2014, 26, 3263–3269. [Google Scholar] [CrossRef]
- Yoo, Y.; DeGregorio, Z.P.; Su, Y.; Koester, S.J.; Johns, E. In-plane 2H-1T’ MoTe2 homojunctions synthesized by flux-controlled phase engineering. Adv. Mater. 2017, 29, 1605461. [Google Scholar] [CrossRef]
- Kim, H.; Johns, J.E.; Yoo, Y. Mixed-dimensional in-plane heterostructures from 1D Mo6Te6 and 2D MoTe2 synthesized by Te-flux-controlled chemical vapor deposition. Small 2020, 16, 2002849. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, H.; Yoo, Y.; Degregorio, Z.P.; Jin, L.; Golani, P.; Azadani, J.G.; Low, T.; Johns, J.E.; Bendersky, L.A.; et al. MoTe2 lateral homojunction field-effect transistors fabricated using flux-controlled phase engineering. ACS Nano 2019, 13, 8035–8046. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, Y.; Wei, Y.; Jiang, H.; Wang, X.; Gong, Y. Contact engineering for two-dimensional semiconductors. J. Semicond. 2020, 41, 071901. [Google Scholar] [CrossRef]
- Zheng, Y.; Gao, J.; Han, C.; Chen, W. Ohmic Contact Engineering for Two-Dimensional Materials. Cell Rep. Phys. Sci. 2021, 2, 100298. [Google Scholar] [CrossRef]
- Léonard, F.; Talin, A.A. Electrical contacts to one- and two-dimensional nanomaterials. Nat. Nanotech. 2011, 6, 773–783. [Google Scholar] [CrossRef] [PubMed]
- Allain, A.; Kang, J.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195–1205. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.H.; Heo, H.; Si, S.; Kim, Y.H.; Noh, H.R.; Song, K.; Kim, J.; Lee, C.S.; Seo, S.Y.; Kim, D.H.; et al. Coplanar semiconductor–metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy. Nat. Nanotech. 2017, 12, 1064–1070. [Google Scholar] [CrossRef]
- Lin, Y.C.; Dumcenco, D.O.; Huang, Y.S.; Suenage, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotech. 2014, 9, 391–396. [Google Scholar] [CrossRef]
- Li, A.; Pan, J.; Dai, X.; Ouyang, F. Electrical contacts of coplanar 2H/1T’ MoTe2 monolayer. J. Appl. Phys. 2019, 125, 075104. [Google Scholar] [CrossRef]
- Keum, D.H.; Cho, S.; Kim, J.H.; Choe, D.H.; Sung, H.J.; Kan, M.; Kang, H.; Hwang, J.Y.; Kim, S.W.; Yang, H.; et al. Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 2015, 11, 482–486. [Google Scholar] [CrossRef]
- Sankar, R.; Rao, G.N.; Muthuselvam, I.P.; Butler, C.; Kumar, N.; Senthil Murugan, G.; Shekhar, C.; Chang, T.R.; Wen, C.Y.; Chen, C.W.; et al. Polymorphic layered MoTe2 from semiconductor, topological insulator, to Weyl semimetal. Chem. Mater. 2017, 29, 699–707. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y.; Tang, L.; Jin, Y.; Zhao, T.; Xiu, F. Controllable Schottky Barriers between MoS2 and Permalloy. Sci. Rep. 2014, 4, 6928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, D.Y.; Jheng, J.J.; Ko, T.S.; Hsu, H.P.; Lin, C.F. Doping with Nb enhances the photoresponsivity of WSe2 thin sheets. AIP Adv. 2018, 8, 055011. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, B.; Yang, W.; Jia, W.; Li, J.; Jiang, C.; Jiang, X. 3D-branched hierarchical 3C-SiC/ZnO heterostructures for high-performance photodetectors. Nanoscale 2016, 8, 17573–17580. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Jiang, Y.; Li, S.; Li, F.; Lan, X.; Zhang, Y.; Wu, C.; Luo, L.; Jie, J. Construction of high-quality CdS:Ga nanoribbon/silicon heterojunctions and their nano-optoelectronic applications. Nanotechnology 2011, 22, 405201. [Google Scholar] [CrossRef]
- Ko, T.S.; Huang, C.C.; Lin, D.Y.; Ruan, Y.J.; Huang, Y.S. Electrical and optical properties of Co-doped and undoped MoS2. Jpn. J. Appl. Phys. 2016, 55, 04EP06. [Google Scholar] [CrossRef]
- Bhuiyan, A.S.; Martinez, A.; Esteve, D. A new Richardson plot for non-ideal schottky diodes. Thin Solid Films 1988, 161, 93–100. [Google Scholar] [CrossRef]
- Anwar, A.; Nabet, B.; Culp, J.; Castro, F. Effects of electron confinement on thermionic emission current in a modulation doped heterostructure. J. Appl. Phys. 1999, 85, 2663–2666. [Google Scholar] [CrossRef]
Contact Type | Ag Electrode | 1T-MoTe2 Interlayer |
---|---|---|
k1 | 0.61 | 0.48 |
k2 | 0.39 | 0.52 |
τ1 | 7.5 ms | 3.8 ms |
τ2 | 105 us | 35 us |
Contact Type | Work Function (ΦM) | Schottky Barrier Height (ΦB) |
---|---|---|
Ag | 4.26 eV | 108.3 meV |
1T-MoTe2 | 4.10 eV | 60.6 meV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, D.-Y.; Hsu, H.-P.; Liu, G.-H.; Dai, T.-Z.; Shih, Y.-T. Enhanced Photoresponsivity of 2H-MoTe2 by Inserting 1T-MoTe2 Interlayer Contact for Photodetector Applications. Crystals 2021, 11, 964. https://doi.org/10.3390/cryst11080964
Lin D-Y, Hsu H-P, Liu G-H, Dai T-Z, Shih Y-T. Enhanced Photoresponsivity of 2H-MoTe2 by Inserting 1T-MoTe2 Interlayer Contact for Photodetector Applications. Crystals. 2021; 11(8):964. https://doi.org/10.3390/cryst11080964
Chicago/Turabian StyleLin, Der-Yuh, Hung-Pin Hsu, Guang-Hsin Liu, Ting-Zhong Dai, and Yu-Tai Shih. 2021. "Enhanced Photoresponsivity of 2H-MoTe2 by Inserting 1T-MoTe2 Interlayer Contact for Photodetector Applications" Crystals 11, no. 8: 964. https://doi.org/10.3390/cryst11080964
APA StyleLin, D. -Y., Hsu, H. -P., Liu, G. -H., Dai, T. -Z., & Shih, Y. -T. (2021). Enhanced Photoresponsivity of 2H-MoTe2 by Inserting 1T-MoTe2 Interlayer Contact for Photodetector Applications. Crystals, 11(8), 964. https://doi.org/10.3390/cryst11080964