New Metakaolin-Based Geopolymers with the Addition of Different Types of Waste Stone Powder
Abstract
:1. Introduction
2. Experimental Part
2.1. Materials
2.2. Sample Preparation
2.3. Methods
3. Results
3.1. Waste Stone Powder Characteristics
3.2. Geopolymer Composite Characteristics
4. Conclusions
- Waste stone powder (WSP) was successfully used as an additive in the preparation of geopolymer composites. The composites obtained are solid, resistant and insoluble in water.
- WSP additions rather improve the compressive strengths of geopolymers in comparison with a geopolymer composite containing only quartz sand (STJ 25). The flexural strengths are positively influenced only by some of them, especially feldspar and dolomite, The B addition (10.6 wt. %) of feldspar and dolomite increases significantly both flexural and compressive strengths, especially after 90 days.
- Setting time measurements have shown that waste stone powder can be used to accelerate the solidification of the geopolymer reaction, with the exception of dolomite, which was removed from the correlation because of its higher MgO content. The particle size of WSP affects the solidification time of the samples. The smaller the particles (D50), the faster the solidification of the samples (the shorter their final setting time).
- Concerning infrared spectroscopy, there is no significant shift in Si-O-Al bands, which means that the WSP is engaged in the geopolymer structure only minimally or not at all.
- The WSP does not worsen the textural properties, such as pore volumes and surfaces—porosity. These remain more or less unchanged, approximately in the values of the porosity of the matrix. Only the addition of feldspar slightly increases the porosity, sorption capacity and content of micropores.
- The obtained results will make it possible to recycle WSP, which was previously landfilled, as a new source of material for the preparation of geopolymers. The use of alternative sources of raw materials plays a major role in the reduction of the environmental burden and in the pursuit of the sustainability of natural resources.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Havelcová, M.; Bičáková, O.; Sýkorová, I.; Weishauptová, Z.; Melegy, A. Characterization of products from pyrolysis of coal with the addition of polyethylene terephthalate. Fuel Process. Technol. 2016, 154, 123–131. [Google Scholar] [CrossRef]
- Straka, P.; Bičáková, O.; Šupová, M. Thermal conversion of polyolefins/polystyrene ternary mixtures: Kinetics and pyrolysis on a laboratory and commercial scales. J. Anal. Appl. Pyrolysis 2017, 128, 196–207. [Google Scholar] [CrossRef]
- Perná, I.; Hanzlíček, T.; Straka, P.; Steinerová, M. Acoustic absorption of geopolymer/sand mixture. Ceram. Silik. 2009, 53, 48–51. [Google Scholar]
- Perná, I.; Šupová, M.; Hanzlíček, T.; Špaldoňová, A. The synthesis and characterization of geopolymers based on metakaolin and high LOI straw ash. Constr. Build. Mater. 2019, 228, 116765. [Google Scholar] [CrossRef]
- Perná, I.; Hanzlíček, T. The solidification of aluminum production waste in geopolymer matrix. J. Clean. Prod. 2014, 84, 657–662. [Google Scholar] [CrossRef]
- Siddique, R.; Cachim, P. Waste and Supplementary Cementitious Materials in Concrete: Characterisation, Properties and Applications; Woodhead Publishing: Cambridge, UK, 2018. [Google Scholar]
- Singh, J.; Singh, S.P. Geopolymerization of solid waste of non-ferrous metallurgy—A review. J. Environ. Manag. 2019, 251, 109571. [Google Scholar] [CrossRef]
- Bouna, L.; El Fakir, A.A.; Benlhachemi, A.; Draoui, K.; Ezahri, M.; Bakiz, B.; Villain, S.; Guinneton, F.; Elalem, N. Synthesis and characterization of mesoporous geopolymer based on Moroccan kaolinite rich clay. Appl. Clay Sci. 2020, 196, 105764. [Google Scholar] [CrossRef]
- Ghani, U.; Hussain, S.; Imtiaz, M.; Khan, S.A. Laterite clay-based geopolymer as a potential adsorbent for the heavy metals removal from aqueous solutions. J. Saudi Chem. Soc. 2020, 24, 874–884. [Google Scholar] [CrossRef]
- Lakhani, R.; Kumar, R.; Tomar, P. Utilization of Stone Waste in the Development of Value Added Products: A State of the Art Review. J. Eng. Sci. Technol. 2014, 7, 180–187. [Google Scholar] [CrossRef]
- Mahzuz, H.M.A.; Ahmed, A.A.M.; Yusuf, M.A. Use of stone powder in concrete and mortar as an alternative of sand. Afr. J. Environ. Sci. Technol. 2011, 5, 381–388. [Google Scholar]
- Sivrikaya, O.; Kiyildi, K.R.; Karaca, Z. Recycling waste from natural stone processing plants to stabilize clayey soil. Environ. Earth Sci. 2014, 71, 4397–4407. [Google Scholar] [CrossRef] [Green Version]
- Liew, Y.M.; Heah, C.Y.; Kamarudin, H. Structure and properties of clay-based geopolymer cements: A review. Prog. Mater. Sci. 2016, 83, 595–629. [Google Scholar] [CrossRef]
- Rashad, A.M. Alkali-activated metakaolin: A short guide for civil engineer—An overview. Constr. Build. Mater. 2013, 41, 751–765. [Google Scholar] [CrossRef]
- Zhang, P.; Zheng, Y.; Wang, K.; Zhang, J. A review on properties of fresh and hardened geopolymer mortar. Compos. Part B 2018, 152, 79–95. [Google Scholar] [CrossRef]
- Zhang, P.; Gao, Z.; Wang, J.; Guo, J.; Hu, S.; Ling, Y. Properties of fresh and hardened fly ash/slag based geopolymer concrete: A review. J. Clean. Prod. 2020, 270, 122389. [Google Scholar] [CrossRef]
- Amran, Y.M.; Alyousef, R.; Alabduljabbar, H.; El-Zeadani, M. Clean production and properties of geopolymer concrete: A review. J. Clean. Prod. 2020, 251, 119679. [Google Scholar] [CrossRef]
- Singh, N.B.; Middendorf, B. Geopolymers as an alternative to Portland cement: An overview. Constr. Build. Mater. 2020, 237, 117455. [Google Scholar] [CrossRef]
- Xu, H.; Van Deventer, J.S.J. The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Process. 2000, 59, 247–266. [Google Scholar] [CrossRef] [Green Version]
- Novotná, M.; Perná, I.; Hanzlíček, T. Review of Possible Fillers and Additives for Geopolymer Materials. Waste Forum 2020, 2, 78–89. Available online: www.wasteforum.cz (accessed on 15 June 2021).
- Kohout, J.; Koutník, P. Effect of Filler Type on the Thermo-Mechanical Properties of Metakaolinite-Based Geopolymer Composites. Materials 2020, 13, 2395. [Google Scholar] [CrossRef]
- Lahoti, M.; Tan, K.H.; Yang, E. A critical review of geopolymer properties for structural fire-resistance applications. Constr. Build. Mater. 2019, 221, 514–526. [Google Scholar] [CrossRef]
- Perez-Cortes, P.; Escalante-Garcia, J.I. Alkali activated metakaolin with high limestone contents–Statistical modeling of strength and environmental and cost analyses. Cem. Concr. Compos. 2020, 106, 103450. [Google Scholar] [CrossRef]
- Cohen, E.; Peled, A.; Bar-Nes, G. Dolomite-based quarry-dust as a substitute for fly-ash geopolymers and cement pastes. J. Clean. Prod. 2019, 235, 910–919. [Google Scholar] [CrossRef]
- Komnitsas, K.; Soultana, A.; Bartzas, G. Marble waste valorization through alkali activation. Minerals 2021, 11.1, 46. [Google Scholar] [CrossRef]
- Dąbrowski, A. Adsorption—From theory to practice. Adv. Colloid Interface Sci. 2001, 93, 135–224. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Washburn, E.W. The dynamics of capillary flow. Phys. Rev. 1921, 17, 273. [Google Scholar] [CrossRef]
- Dubinin, M.M. Adsorption in micropores. J. Colloid Interface Sci. 1967, 23, 487–499. [Google Scholar] [CrossRef]
- Medek, J. Possibility of micropore analysis of coal and coke from the carbon dioxide isotherm. Fuel 1977, 56, 131–133. [Google Scholar] [CrossRef]
- Hanzlíček, T.; Steinerová-Vondráková, M. Investigation of dissolution of aluminosilicates in aqueous alkaline solution under laboratory conditions. Ceramics 2002, 46, 97–103. [Google Scholar]
- Rees, C.A.; Provis, J.L.; Lukey, G.C.; van Deventer, J.S. Attenuated total reflectance Fourier transform infrared analysis of fly ash geopolymer gel aging. Langmuir 2007, 23, 8170–8179. [Google Scholar] [CrossRef] [PubMed]
- Řimnáčová, D.; Weishauptová, Z.; Přibyl, O.; Sýkorová, I.; René, M. Effect of shale properties on CH4 and CO2 sorption capacity in Czech Silurian shales. J. Nat. Gas Sci. Eng. 2020, 80, 103377. [Google Scholar] [CrossRef]
- Chouikhi, N.; Cecilia, J.A.; Vilarrasa-García, E.; Besghaier, S.; Chlendi, M.; Franco Duro, F.I.; Rodriguez Castellon, E.; Bagane, M. CO2 adsorption of materials synthesized from clay minerals: A review. Minerals 2019, 9, 514. [Google Scholar] [CrossRef] [Green Version]
- International Union of Pure and Applied Chemistry (IUPAC) Manuals of Symbols and Terminology for Physico Chemical Quantities and Units; Butterworths: London, UK, 1972.
- Li, Z.; Liu, D.; Cai, Y.; Wang, Y.; Teng, J. Adsorption pore structure and its fractal characteristics of coals by N2 adsorption/desorption and FESEM image analyses. Fuel 2019, 257, 116031. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
Material/Oxide | Al2O3 | SiO2 | CaO | Na2O | K2O | MgO | Fe2O3 | TiO2 | LOI |
---|---|---|---|---|---|---|---|---|---|
L05 | 41.99 | 50.28 | 0.14 | <0.11 | 0.59 | 0.138 | 1.03 | 1.522 | 3.65 |
Quartz sand | 0.3 | 99.3 | <0.001 | <0.001 | <0.001 | <0.001 | 0.025 | 0.15 | 0.1 |
Material/Oxide | Al2O3 | SiO2 | CaO | Na2O | K2O | MgO | Fe2O3 | TiO2 | LOI |
---|---|---|---|---|---|---|---|---|---|
Dolomite | 0.34 | 1.21 | 37.39 | ˂0.11 | 0.15 | 14.33 | 0.33 | 0.02 | 46.05 |
Marble | 0.78 | 1.93 | 51.24 | ˂0.11 | 0.22 | 2.39 | 0.63 | 0.05 | 42.51 |
Marlstone | 4.45 | 57.85 | 19.69 | ˂0.11 | 0.90 | 0.55 | 1.94 | 0.28 | 13.88 |
Limestone | 0.21 | 0.39 | 55.04 | ˂0.11 | 0.07 | 0.47 | 0.36 | 0.02 | 43.31 |
Feldspar | 17.42 | 68.64 | 0.55 | 1.98 | 7.47 | 0.33 | 1.56 | 0.15 | 0.61 |
IST | FST | RST | |
---|---|---|---|
(min) | |||
STJ 25 | 535 | 660 | 125 |
Dolomite-A | 530 | 680 | 150 |
Dolomite-B | 510 | 635 | 125 |
Marble-A | 385 | 495 | 110 |
Marble-B | 290 | 375 | 85 |
Marlstone-A | 540 | 655 | 115 |
Marlstone-B | 480 | 605 | 125 |
Limestone-A | 490 | 660 | 170 |
Limestone-B | 440 | 535 | 95 |
Feldspar-A | 470 | 585 | 115 |
Feldspar-B | 430 | 515 | 85 |
Sample | Flexural Strength | Compressive Strength | ||
---|---|---|---|---|
(MPa) | (MPa) | |||
28 days | 90 days | 28 days | 90 days | |
STJ 25 | 6.44 ± 0.59 | 13.03 ± 0.82 | 86.6 ± 4.50 | 84.6 ± 6.18 |
Dolomite-A | 4.80 ± 0.17 | 11.47 ± 1.07 | 72.7 ± 6.71 | 85.5 ± 5.87 |
Dolomite-B | 5.15 ± 0.66 | 13.10 ± 0.62 | 87.7 ± 7.41 | 104.9 ± 4.19 |
Marble-A | 7.25 ± 1.83 | 11.23 ± 1.07 | 75.7 ± 2.10 | 80.9 ± 3.62 |
Marble-B | 9.59 ± 1.02 | 10.76 ± 1.22 | 73.8 ± 2.32 | 84.6 ± 4.23 |
Marlstone-A | 7.80 ± 0.95 | 12.17 ± 0.62 | 80.9 ± 2.75 | 86.5 ± 4.11 |
Marlstone-B | 7.64 ± 1.33 | 11.78 ± 1.91 | 78.4 ± 6.83 | 91.0 ± 6.22 |
Limestone-A | 8.74 ± 0.68 | 11.15 ± 0.36 | 78.3 ± 3.41 | 82.7 ± 5.40 |
Limestone-B | 7.25 ± 1.53 | 10.69 ± 2.12 | 75.3 ± 6.18 | 88.5 ± 7.78 |
Feldspar-A | 6.44 ± 1.55 | 13.18 ± 0.59 | 96.0 ± 2.19 | 87.1 ± 9.36 |
Feldspar-B | 6.05 ± 0.89 | 15.44 ± 1.02 | 94.7 ± 3.76 | 92.6 ± 1.83 |
Sample | Parameter | |||||
---|---|---|---|---|---|---|
SBET | Sm | SHg | P | n | Esorp | |
(m2·g−1) | (%) | (mg·g−1) | (kJ·mol−1) | |||
STJ 25 | 60.6 | 108.2 | 5.2 | 6.3 | 20.8 | 14.8 |
Dolomite-B | 47.4 | 115.3 | 5.2 | 5.7 | 23.4 | 17.0 |
Marble-B | 46.7 | 98.9 | 7.5 | 6.3 | 20.1 | 16.8 |
Marlstone-B | 43.0 | 112.73 | 6.3 | 7.2 | 22.8 | 17.0 |
Limestone-B | 45.5 | 100.3 | 6.5 | 5.7 | 20.4 | 16.7 |
Feldspar-B | 52.1 | 124.1 | 5.5 | 6.9 | 24.9 | 16.5 |
AcC | 1343.0 | 573.1 | - | >70 | 75.2 | 9.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perná, I.; Novotná, M.; Řimnáčová, D.; Šupová, M. New Metakaolin-Based Geopolymers with the Addition of Different Types of Waste Stone Powder. Crystals 2021, 11, 983. https://doi.org/10.3390/cryst11080983
Perná I, Novotná M, Řimnáčová D, Šupová M. New Metakaolin-Based Geopolymers with the Addition of Different Types of Waste Stone Powder. Crystals. 2021; 11(8):983. https://doi.org/10.3390/cryst11080983
Chicago/Turabian StylePerná, Ivana, Martina Novotná, Daniela Řimnáčová, and Monika Šupová. 2021. "New Metakaolin-Based Geopolymers with the Addition of Different Types of Waste Stone Powder" Crystals 11, no. 8: 983. https://doi.org/10.3390/cryst11080983
APA StylePerná, I., Novotná, M., Řimnáčová, D., & Šupová, M. (2021). New Metakaolin-Based Geopolymers with the Addition of Different Types of Waste Stone Powder. Crystals, 11(8), 983. https://doi.org/10.3390/cryst11080983