Correlations between Garnet Species and Vibration Spectroscopy: Isomorphous Substitution Implications
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Gem Properties of the Garnet Samples
3.2. Chemical Composition Analysis
3.3. Raman Spectroscopy Features
3.4. Infrared Spectroscopy Features
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adamo, I.; Pavese, A.; Prosperi, L.; Ajò, D. Gem-quality garnets: Correlations between gemological properties, chemical composition and infrared spectroscopy. J. Gemmol. 2007, 30, 307–313. [Google Scholar] [CrossRef]
- Baxter, E.F.; Caddick, M.J.; Dragovic, B. Garnet: A rock-forming mineral petrochronometer. Rev. Mineral. Geochem. 2017, 83, 469–533. [Google Scholar] [CrossRef] [Green Version]
- Grew, E.S.; Locock, A.J.; Mills, S.J.; Galuskina, I.O.; Galuskin, E.V.; Halenius, U. Nomenclature of the garnet supergroup. Am. Mineral. 2013, 98, 785–811. [Google Scholar] [CrossRef]
- Antao, S.M. Crystal Chemistry of Six Grossular Garnet Samples from Different Well-Known Localities. Minerals 2021, 11, 767. [Google Scholar] [CrossRef]
- Locock, A.J. An Excel spreadsheet to recast analyses of garnet into end-member components, and a synopsis of the crystal chemistry of natural silicate garnets. Comput. Geosci. 2008, 34, 1769–1780. [Google Scholar] [CrossRef]
- Adamo, I.; Bocchio, R.; Diella, V.; Caucia, F.; Schmetzer, K. Demantoid from Balochistan, Pakistan: Gemmological and Mineralogical Characterization. J. Gemmol. 2015, 34, 428–433. [Google Scholar] [CrossRef]
- Schwarzinger, C. Determination of demantoid garnet origin by chemical fngerprinting. Monatshefte Chem. Chem. Mon. 2019, 150, 907–912. [Google Scholar] [CrossRef] [Green Version]
- Kos, S.; Dolenec, M.; Lux, J.; Dolence, S. Raman microspectroscopy of garnets from S-Fibulae from the Archaeological Site Lajh (Slovenia). Minerals 2020, 10, 325. [Google Scholar] [CrossRef] [Green Version]
- Koralay, T.; Oren, U. Determination of spectroscopic features and gemstone potential of garnet crystals from the Camkoy region (Aydin-SW Turkey) using XRPD, XRF, Confocal Raman Spectroscopy, EPMA and gemological test methods. Mineral. Crystall. 2020, 89, 105–123. [Google Scholar]
- Johnson, M.L.; Boehm, E.; Krupp, H.; Zang, J.W.; Kammerling, R.C. Gem-quality grossular-andradite: A new garnet from Mali. Gems Gemol. 1995, 31, 152–166. [Google Scholar] [CrossRef]
- Phillips, W.R.; Ta1antsev, A.S. Russian Demantoid Czar of the Garnet Family. Gems Gemol. 1996, 32, 100–111. [Google Scholar] [CrossRef]
- Krzemnicki, M.S.; Hanni, H.; Reusser, E. Colour change garnets from Madagascar: Comparison of colorimetric with chemical data. J. Gemmol. 2001, 27, 395–408. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Grapes, R.H.; Catchpole, H.; Klaudius, J. Horse-tail inclusions in demantoid garnet from Val Malenco, Italy. J. Gemmol. 2003, 28, 333–336. [Google Scholar] [CrossRef]
- Schmetzer, K.; Bernhardt, H.J.; Kiefert, L. Star garnets and star garnet cat’s-eyes from Ambatondrazaka, Madagascar. J. Gemmol. 2002, 28, 13–24. [Google Scholar] [CrossRef]
- Teertstra, D.K. The refraction of light by garnet depends on both composition and structure. J. Gemmol. 2008, 31, 105–110. [Google Scholar] [CrossRef]
- Kolesov, B.A.; Geiger, C.A. Raman spectra of silicate garnets. Phys Chem Miner 1998, 25, 142–151. [Google Scholar] [CrossRef]
- Bosenick, A.; Geiger, C.A.; Schaller, T.; Sebald, A. A 29Si MAS NMR and IR Spectroscopic investigation of synthetic pyrope-grossular garnet solid solutions. Am. Mineral. 1995, 80, 691–704. [Google Scholar] [CrossRef]
- Du, W.; Han, B.F.; Clark, S.; Wang, Y.C.; Liu, X. Raman spectroscopic study of synthetic pyrope–grossular garnets: Structural implications. Phys. Chem. Miner. 2018, 45, 197–209. [Google Scholar] [CrossRef]
- Makreski, P.; Runcevski, T.; Jovanovski, G. Minerals from Macedonia. XXVI. Characterization and spectra-structure correlations for grossular and uvarovite. Raman study supported by IR spectroscopy. J. Raman Spectrosc. 2011, 42, 72–77. [Google Scholar] [CrossRef]
- Ballaran, T.B.; Woodland, A.B. Local structure of ferric iron-bearing garnets deduced by IR-spectroscopy. Chem. Geol. 2006, 225, 360–372. [Google Scholar] [CrossRef]
- Droop, G.T.R. A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral. Mag. 1987, 51, 431–435. [Google Scholar] [CrossRef] [Green Version]
- Stockton, C.; Manson, D. A proposed new classification for gem-quality garnets. Gems Gemol. 1985, 21, 205–218. [Google Scholar] [CrossRef] [Green Version]
- Pezzotta, F.; Adamo, I.; Diella, V. Demantoid and topazolite from Antetezambato, Northern Madagascar: Review and new Data. Gems Gemol. 2011, 47, 2–14. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, X.C.; Zhu, Z.L. Quantitative relation between Raman shift and metal ion content in garnets. J. Light Scatt. 2015, 27, 350–354. (In Chinese) [Google Scholar]
- Kanis, J.; Redmann, M. Four hessonite occurrences in Orissa, India. J. Gemmol. 1994, 24, 75–83. [Google Scholar]
- Moore, R.K.; White, W.B.; Long, T.V. Vibrational spectra of the common silicates: I. The garnets. Am. Mineral. 1971, 56, 54–71. [Google Scholar]
- Hofmeister, A.M.; Chopelas, A. Vibrational spectroscopy of end-member silicate garnets. Phys. Chem. Miner. 1991, 17, 503–526. [Google Scholar] [CrossRef]
- Zicovich-Wilson, C.M.; Torres, F.J.; Pascale, F.; Valenzano, L.; Orlando, R.; Dovesi, R. Ab initio simulation of the IR spectra of pyrope, grossular, and andradite. J. Comput. Chem. 2008, 29, 2268–2278. [Google Scholar] [CrossRef]
- Woodland, A.B.; Ross II, C.R. A crystallographic and Mössbauer spectroscopy study of Fe3Al2Si3O12-Fe32+Fe23+Si3O12 (almandine-skiagite) and Ca3Fe23+Si3O12–Fe32+Fe23+Si3O12 (andradite-skiagite) garnet solid solutions. Phys. Chem. Miner. 1994, 21, 117–132. [Google Scholar] [CrossRef]
- Pavese, A.; Artioli, G.; Prencipe, M. X-ray single-crystal diffraction study of pyrope in the temperature range 30–973 K. Am. Mineral. 1995, 80, 457–464. [Google Scholar] [CrossRef]
- Geiger, C.A.; Armbruster, T.; Lager, G.A.; Jiang, K.; Lottermoser, W.; Amthauer, G. A combined temperature dependent 57Fe Mössbauer and single crystal X-ray diffraction study of synthetic almandine: Evidence for the Gol’danskii-Karyagin effect. Phys. Chem. Miner. 1992, 19, 121–126. [Google Scholar] [CrossRef]
- Novak, G.A.; Gibbs, G.V. The crystal chemistry of the silicate garnets. Am. Mineral. 1971, 56, 791–825. [Google Scholar]
- Hazen, R.M.; Finger, L.W. Crystal structures and compressibilities of pyrope and grossular to 60 kbar. Am. Mineral. 1978, 63, 297–303. [Google Scholar]
- Armbruster, T.; Geiger, C.A. Andradite crystal chemistry, dynamic X-site disorder and structural strain in silicate garnets. Eur. J. Mineral. 1993, 5, 59–71. [Google Scholar] [CrossRef]
Sample No. | Weight (ct) | SG | RI | Color | UVF * | Properties |
---|---|---|---|---|---|---|
SLS-1 | 0.755 | 3.872 | NR* | light-orange | IF * | spessartine |
SLS-2 | 0.710 | 4.057 | 1.745 | yellow-orange | IF | grossular |
SLS-3 | 0.335 | 4.188 | NR | red-orange | IF | spessartine |
SLS-4 | 0.550 | 4.074 | NR | orange | IF | spessartine |
SLS-5 | 0.790 | 4.158 | NR | brown-red | IF | spessartine |
SLS-6 | 0.470 | 4.273 | NR | orande-red | IF | spessartine |
SLS-7 | 2.355 | 4.443 | 1.78 (hm *) | dark purple-red | IF | star almandine |
SLS-8 | 2.170 | 3.875 | 1.78 (hm) | dark purple-red | IF | star almandine |
SLS-9 | 1.560 | 4.160 | 1.780 | purple-red | IF | almandine |
SLS-10 | 1.485 | 4.368 | 1.780 | purple-red | IF | almandine |
SLS-11 | 1.450 | 3.766 | 1.760 | purple-red | IF | rhodolite |
SLS-12 | 1.360 | 3.942 | 1.760 | purple-red | IF | rhodolite |
SLS-13 | 1.000 | 4.082 | 1.765 | brown-red | IF | rhodolite |
SLS-14 | 1.040 | 3.586 | 1.750 | orande-red | IF | grossular |
SLS-15 | 0.915 | 3.588 | 1.750 | orande-red | IF | grossular |
SLS-16 | 0.745 | 3.921 | 1.775 | purple-gray (daylight), orange-brown (incandescent light) | IF | Ccg * |
SLS-17 | 0.610 | 4.067 | 1.776 | IF | Ccg * | |
SLS-18 | 0.750 | 3.947 | 1.773 | IF | Ccg * | |
SLS-19 | 0.490 | 3.630 | 1.738 | green | IF | tsavorite |
SLS-20 | 0.420 | 3.360 | 1.733 | green | IF | tsavorite |
SLS-21 | 1.180 | 3.746 | 1.758 | rose-red | IF | Rrg * |
SLS-22 | 0.245 | 4.083 | NR | grass green | IF | demantoid |
SLS-23 | 0.525 | 3.621 | NR | yellow-green | IF | andradite |
SLS-24 | 0.920 | 3.680 | 1.765 | green-yellow | IF | Mlg* |
SLS-25 | 0.875 | 3.646 | 1.767 | green-yellow | IF | Mlg* |
Sample No. | SLS-1 | SLS-2 | SLS-3 | SLS-4 | SSLS-5 | SLS-6 | SSLS-7 | SSLS-8 | SSLS-9 |
Oxides(wt.%) | |||||||||
SiO2 | 36.322 | 39.179 | 36.121 | 36.573 | 36.645 | 36.481 | 38.184 | 38.541 | 37.807 |
TiO2 | 0.085 | 0.202 | 0.024 | 0.098 | 0.109 | 0.274 | 0.080 | 0.026 | 0.006 |
Al2O3 | 19.295 | 21.217 | 19.553 | 19.994 | 19.553 | 19.552 | 20.380 | 20.340 | 20.397 |
Cr2O3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
FeOTa | 0.348 | 2.352 | 4.554 | 2.100 | 8.557 | 4.939 | 35.152 | 34.010 | 35.777 |
MnO | 43.270 | 0.096 | 38.992 | 40.416 | 34.151 | 37.907 | 0.510 | 0.498 | 1.788 |
MgO | 0.008 | 0.118 | 0.005 | 0.008 | 0.017 | 0.002 | 3.972 | 3.440 | 2.592 |
CaO | 0.178 | 36.713 | 0.285 | 0.396 | 0.404 | 0.263 | 0.400 | 1.914 | 0.434 |
V2O3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Na2O | 0.005 | 0.002 | 0.005 | 0.005 | 0 | 0.012 | 0.042 | 0.020 | 0.021 |
K2O | 0.001 | 0.001 | 0 | 0.001 | 0.005 | 0 | 0 | 0 | 0.001 |
P2O5 | 0.246 | 0.019 | 0.225 | 0.196 | 0.191 | 0.254 | 0.259 | 0.040 | 0.098 |
Total | 99.758 | 99.899 | 99.764 | 99.787 | 99.632 | 99.684 | 98.979 | 98.829 | 98.921 |
Ions based on 12 oxygens | |||||||||
Si | 3.024 | 2.968 | 3.009 | 3.021 | 3.034 | 3.023 | 3.080 | 3.101 | 3.077 |
Ti | 0.005 | 0.016 | 0.002 | 0.006 | 0.007 | 0.015 | 0.005 | 0.002 | 0.001 |
Al | 1.893 | 1.894 | 1.918 | 1.946 | 1.908 | 1.910 | 1.939 | 1.929 | 1.957 |
Gr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Fe3+ | 0.022 | 0.134 | 0.046 | 0 | 0 | 0 | 0 | 0 | 0 |
Fe2+ | 0 | 0 | 0.266 | 0.145 | 0.593 | 0.342 | 2.373 | 2.289 | 2.435 |
Mn | 3.051 | 0.006 | 2.748 | 2.828 | 2.395 | 2.661 | 0.035 | 0.034 | 0.123 |
Mg | 0.001 | 0.013 | 0.001 | 0.001 | 0.002 | 0.001 | 0.478 | 0.413 | 0.315 |
Ca | 0.016 | 2.980 | 0.025 | 0.035 | 0.036 | 0.0234 | 0.035 | 0.165 | 0.038 |
V | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Mol% of end members | |||||||||
Uvarovite | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Andradite | 1.07 | 6.61 | 2.27 | 1.80 | 3.31 | 3.29 | 0.25 | 0.14 | 0 |
Pyrope | 0.03 | 0.44 | 0.02 | 0.03 | 0.07 | 0.01 | 16.39 | 14.24 | 10.72 |
Spessartine | 99.45 | 0.20 | 90.40 | 95.11 | 80.91 | 89.84 | 1.20 | 1.17 | 4.20 |
Grossular | 0 | 91.33 | 0 | 0 | 0 | 0 | 0.94 | 5.55 | 1.29 |
Almandine | 0 | 0 | 8.74 | 3.68 | 17.81 | 9.37 | 81.22 | 78.89 | 82.98 |
Other | 0 | 1.42 | 0 | 0 | 0 | 0 | 0 | 0 | 0.82 |
Sample No. | SLS-10 | SLS-11 | SLS-12 | SLS-13 | SLS-14 | SLS-15 | SLS-16 | SLS-17 | SLS-18 |
Oxides(wt.%) | |||||||||
SiO2 | 38.179 | 41.087 | 41.203 | 41.108 | 39.475 | 38.812 | 38.789 | 39.593 | 39.153 |
TiO2 | 0.017 | 0.016 | 0.013 | 0.014 | 0.163 | 0.199 | 0.076 | 0.043 | 0.105 |
Al2O3 | 20.561 | 22.531 | 22.286 | 21.660 | 19.411 | 19.433 | 20.529 | 20.705 | 20.620 |
Cr2O3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.093 | 0.106 |
FeOTa | 35.334 | 17.622 | 18.090 | 20.594 | 4.000 | 4.575 | 1.987 | 1.892 | 2.498 |
MnO | 1.445 | 0.487 | 0.586 | 0.767 | 0.257 | 0.261 | 29.000 | 27.407 | 27.401 |
MgO | 2.761 | 13.698 | 13.357 | 11.819 | 0.141 | 0.375 | 7.073 | 8.200 | 7.964 |
CaO | 0.469 | 3.960 | 3.818 | 3.357 | 36.400 | 36.169 | 1.809 | 1.813 | 1.465 |
V2O3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Na2O | 0.029 | 0.005 | 0.004 | 0.006 | 0.003 | 0.004 | 0.020 | 0.011 | 0.014 |
K2O | 0 | 0.001 | 0.001 | 0 | 0 | 0.001 | 0 | 0.001 | 0.001 |
P2O5 | 0.145 | 0.050 | 0.057 | 0.052 | 0.013 | 0.020 | 0.055 | 0.061 | 0.087 |
Total | 98.940 | 99.457 | 99.415 | 99.377 | 99.863 | 99.849 | 99.338 | 99.819 | 99.414 |
Ions based on 12 oxygens | |||||||||
Si | 3.094 | 3.046 | 3.062 | 3.087 | 3.009 | 2.967 | 3.039 | 3.065 | 3.047 |
Ti | 0.001 | 0.001 | 0.001 | 0.001 | 0.009 | 0.011 | 0.005 | 0.003 | 0.006 |
Al | 1.964 | 1.969 | 1.952 | 1.917 | 1.744 | 1.751 | 1.896 | 1.889 | 1.891 |
Gr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.006 | 0.007 |
Fe3+ | 0 | 0 | 0 | 0 | 0.229 | 0.263 | 0 | 0 | 0 |
Fe2+ | 2.395 | 1.093 | 1.124 | 1.294 | 0 | 0 | 0.130 | 0.123 | 0.163 |
Mn | 0.099 | 0.031 | 0.037 | 0.049 | 0.017 | 0.017 | 1.924 | 1.774 | 1.806 |
Mg | 0.328 | 1.514 | 1.480 | 1.323 | 0.016 | 0.043 | 0.826 | 0.946 | 0.924 |
Ca | 0.041 | 0.315 | 0.304 | 0.270 | 2.972 | 2.963 | 0.152 | 0.150 | 0.122 |
V | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Mol% of end members | |||||||||
Uvarovite | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.29 | 0.33 |
Andradite | 0 | 0 | 0 | 0 | 11.45 | 13.06 | 3.84 | 3.08 | 3.42 |
Pyrope | 11.14 | 51.27 | 50.71 | 46.68 | 0.53 | 1.41 | 27.94 | 32.27 | 31.35 |
Spessartine | 3.37 | 1.04 | 1.26 | 1.68 | 0.55 | 0.56 | 65.08 | 60.48 | 61.28 |
Grossular | 1.38 | 10.65 | 10.00 | 8.04 | 87.46 | 84.96 | 1.30 | 1.76 | 0.39 |
Almandine | 81.30 | 37.00 | 38.03 | 43.60 | 0 | 0 | 1.84 | 2.12 | 3.23 |
Other | 2.82 | 0.05 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Sample No. | SLS-19 | SLS-20 | SLS-21 | SLS-22 | SLS-23 | SLS-24 | SLS-25 | ||
Oxides(wt.%) | |||||||||
SiO2 | 39.072 | 38.936 | 41.258 | 34.982 | 34.678 | 38.766 | 38.654 | ||
TiO2 | 0.354 | 0.538 | 0.029 | 0.041 | 0 | 0.243 | 0.432 | ||
Al2O3 | 21.719 | 21.833 | 21.826 | 0.072 | 0.002 | 17.419 | 16.788 | ||
Cr2O3 | 0 | 0 | 0 | 0.296 | 0 | 0 | 0 | ||
FeOT a | 0.073 | 0.072 | 19.880 | 29.054 | 29.629 | 6.504 | 7.158 | ||
MnO | 1.328 | 1.019 | 0.711 | 0.010 | 0.005 | 0.157 | 0.102 | ||
MgO | 2.535 | 0.561 | 13.960 | 0.094 | 0.124 | 0.544 | 0.471 | ||
CaO | 36.275 | 36.579 | 1.427 | 34.449 | 34.720 | 36.122 | 36.139 | ||
V2O3 | 0.294 | 0.201 | 0 | 0 | 0 | 0 | 0 | ||
Na2O | 0.004 | 0.004 | 0.020 | 0.001 | 0 | 0.002 | 0.002 | ||
K2O | 0 | 0 | 0.001 | 0 | 0 | 0.001 | 0.001 | ||
P2O5 | 0.017 | 0.014 | 0.176 | 0.010 | 0.013 | 0.022 | 0.018 | ||
Total | 101.671 | 99.757 | 99.288 | 99.009 | 99.171 | 99.780 | 99.765 | ||
Ions based on 12 oxygens | |||||||||
Si | 2.969 | 2.953 | 3.077 | 2.991 | 2.968 | 2.973 | 2.971 | ||
Ti | 0.020 | 0.031 | 0.002 | 0.003 | 0 | 0.014 | 0.025 | ||
Al | 1.945 | 1.951 | 1.918 | 0.007 | 0 | 1.574 | 1.521 | ||
Gr | 0 | 0 | 0 | 0.020 | 0 | 0 | 0 | ||
Fe3+ | 0.004 | 0.004 | 0 | 1.869 | 1.909 | 0.417 | 0.460 | ||
Fe2+ | 0 | 0 | 1.240 | 0 | 0 | 0 | 0 | ||
Mn | 0.086 | 0.066 | 0.045 | 0.001 | 0.001 | 0.010 | 0.007 | ||
Mg | 0.061 | 0.063 | 1.552 | 0.012 | 0.016 | 0.062 | 0.054 | ||
Ca | 2.953 | 2.972 | 0.114 | 3.156 | 3.184 | 2.968 | 2.976 | ||
V | 0.034 | 0.024 | 0 | 0 | 0 | 0 | 0 | ||
Mol % of end-members | |||||||||
Uvarovite | 0 | 0 | 0 | 0.95 | 0 | 0 | 0 | ||
Andradite | 0.20 | 0.20 | 0 | 88.50 | 89.45 | 20.58 | 22.73 | ||
Pyrope | 1.96 | 2.05 | 53.12 | 0.38 | 0.49 | 2.05 | 1.78 | ||
Spessartine | 2.76 | 2.11 | 1.54 | 0.02 | 0.01 | 0.34 | 0.22 | ||
Grossular | 95.09 | 95.65 | 2.40 | 10.16 | 10.05 | 77.04 | 75.28 | ||
Almandine | 0 | 0 | 42.95 | 0 | 0 | 0 | 0 | ||
Other | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Classifications | Species | Sample No. | chemical Structure Formula |
---|---|---|---|
B3+ = Al3+ | Pyrope | SLS-13 | (Mg1.32Fe2+1.29Ca0.27Mn0.05)2.93Al1.92[Si3.19O12] |
SLS-12 | (Mg1.48Fe2+1.12Ca0.30Mn0.04)2.94Al1.95[Si3.06O12] | ||
SLS-11 | (Mg1.51Fe2+1.09Ca0.31Mn0.03)2.94Al1.97[Si3.05O12] | ||
SLS-21 | (Mg1.55Fe2+1.24Ca0.11Mn0.04)2.94Al1.92[Si3.08O12] | ||
Almandine | SLS-8 | (Fe2+2.29Mg0.41Ca0.17Mn0.03)2.90Al1.93[Si3.10O12] | |
SLS-7 | (Fe2+2.37Mg0.48Mn0.03Ca0.04)2.92Al1.94[Si3.08O12] | ||
SLS-10 | (Fe2+2.40Mg0.33Mn0.10Ca0.04)2.87Al1.96[Si3.09O12] | ||
SLS-9 | (Fe2+2.44Mg0.31Mn0.12Ca0.04)2.91Al1.96[Si3.08O12] | ||
Spessartine | SLS-17 | (Mn1.77Mg0.95Ca0.15Fe2+0.12)2.99(Al1.89Cr0.01)1.90[Si3.07O12] | |
SLS-18 | (Mn1.81Mg0.92Fe2+0.16Ca0.12)3.01(Al1.89Cr0.01Ti0.01)1.91[Si3.05O12] | ||
SLS-16 | (Mn1.92Mg0.83Ca0.15Fe2+0.13)3.03Al1.90[Si3.04O12] | ||
SLS-5 | (Mn2.39Fe2+0.59Ca0.04)3.02(Al1.91Ti0.01)1.92[Si3.04O12] | ||
SLS-6 | (Mn2.66Fe2+0.34Ca0.02)3.02(Al1.91Ti0.02)1.93[Si3.02O12] | ||
SLS-3 | (Mn2.75Fe2+0.27Ca0.03)3.05(Al1.92Fe3+0.05)1.97[Si3.01O12] | ||
SLS-4 | (Mn2.83Fe2+0.15Ca0.04)3.02(Al1.95Ti0.01)1.96[Si3.02O12] | ||
SLS-1 | (Mn3.05Ca0.02)3.07(Al1.89Fe3+0.02Ti0.01)1.92[Si3.02O12] | ||
Grossular | SLS-25 | (Ca2.98Mg0.05Mn0.01)3.04(Al1.52Fe3+0.46Ti0.03)2.01[Si2.97O12] | |
SLS-24 | (Ca2.97Mg0.06Mn0.01)3.04(Al1.57Fe3+0.42Ti0.01)2.00[Si2.97O12] | ||
SLS-15 | (Ca2.96Mg0.04Mn0.02)3.02(Al1.75Fe3+0.26Ti0.01)2.02[Si2.97O12] | ||
SLS-14 | (Ca2.97Mn0.02Mg0.02)3.01(Al1.74Fe3+0.23Ti0.01)1.98[Si3.01O12] | ||
SLS-2 | (Ca2.98Mg0.01Mn0.01)3.00(Al1.89Fe3+0.13Ti0.01)2.03[Si2.97O12] | ||
SLS-19 | (Ca2.95Mn0.09Mg0.06)3.10(Al1.94V0.03Ti0.02)1.99[Si2.97O12] | ||
SLS-20 | (Ca2.97Mn0.07Mg0.06)3.10(Al1.95Ti0.03V0.02)2.00[Si2.95O12] | ||
B3+ = Fe3+ | Andradite | SLS-22 | (Ca3.16Mg0.01)3.17(Fe3+1.87Cr0.02Al0.01)1.90[Si2.99O12] |
SLS-23 | (Ca3.18Mg0.02)3.20Fe3+1.91[Si2.97O12] |
Species | Si-O Stretching Vibration | Si-O Bending Vibration | [SiO4]4− Rotational Vibration | [SiO4]4- Translation Vibration | A2+ Translation Vibration | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F2g | Eg | A1g | F2g | Eg | A1g | F2g | Eg | A1g | F2g | Eg | F2g | Eg | |
Pyrope | 1046, 860 | 913 | 635, 503, 485 | 555 | 317 | 354 | 204 | ||||||
Almandine | 1039, 863 | 916 | 631, 583, 500, 478 | 596, 372 | 555 | 315 | 347 | 167 | 211 | ||||
Spessartine | 1026, 850 | 906 | 628, 496, 471 | 590, 369 | 548 | 318 | 347 | 163 | 214 | ||||
Grossular | 1003, 820 | 876 | 625, 502, 474 | 411 | 544 | 325 | 372 | 178 | 243, 275 | ||||
Andradite | 990, 839, 812 | 870 | 548, 446 | 572, 488 | 513 | 322, 308 | 347 | 365 | 170 | 232, 261 | 293 |
Species | Asymmetric Stretching Vibration of Si-O | Symmetric Bending Vibration of Si-O | Asymmetric Bending Vibration of Si-O | Lattice Vibration | |||||
---|---|---|---|---|---|---|---|---|---|
B | C | D | E | F | G | I | H | J | |
Pyrope | 980 | 908 | 883 | - | 580 | 529 | 465 | 490 | 417 |
Almandine | 975 | 908 | 884 | 637 | 575 | 529 | 456 | 483 | 415 |
Spessartine | 968 ± 5 | 900 ± 5 | 874 | 632 | 570 | 522 | 457 | 486 ± 10 | 417 |
Grossular | 940 ± 3 | 873 ± 3 | 847 | 621 | 554 | 508 | 463 | 490 ± 5 | 415 |
Andradite | 928 ± 10 | 848 | 820 | 590 | 520 | 482 | - | 447 | 409 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Zheng, J.; Pei, J.; Xu, X.; Chen, T. Correlations between Garnet Species and Vibration Spectroscopy: Isomorphous Substitution Implications. Crystals 2022, 12, 104. https://doi.org/10.3390/cryst12010104
Li W, Zheng J, Pei J, Xu X, Chen T. Correlations between Garnet Species and Vibration Spectroscopy: Isomorphous Substitution Implications. Crystals. 2022; 12(1):104. https://doi.org/10.3390/cryst12010104
Chicago/Turabian StyleLi, Weiwei, Jinyu Zheng, Jingcheng Pei, Xing Xu, and Tao Chen. 2022. "Correlations between Garnet Species and Vibration Spectroscopy: Isomorphous Substitution Implications" Crystals 12, no. 1: 104. https://doi.org/10.3390/cryst12010104
APA StyleLi, W., Zheng, J., Pei, J., Xu, X., & Chen, T. (2022). Correlations between Garnet Species and Vibration Spectroscopy: Isomorphous Substitution Implications. Crystals, 12(1), 104. https://doi.org/10.3390/cryst12010104