The Chemical Composition of Trapiche-like Quartz from Huanggangliang Area, Inner Mongolia, China
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Gemological Properties
3.2. Different Inclusions in Quartz Samples
3.2.1. Color Zones
3.2.2. Gas-Liquid Inclusions
3.2.3. Fibrous Inclusions
3.2.4. Spherical Inclusions
3.3. Cathodoluminescence
3.4. Electron Probe Microanalysis
3.4.1. EPMA Analysis of Fibrous Inclusions
3.4.2. EPMA Analysis of Spherical Inclusions
3.4.3. EPMA Analysis of Color Zones
3.5. Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy
3.5.1. SEM of Fibrous and Spherical Inclusions
3.5.2. EDX Analysis of Spherical Inclusions
3.6. Raman Spectra
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bertrand, E. Compte-rendu de la séance du 13 Février 1879. Bull. Société Française Minéralogie Crystallogr. 1879, 2, 31. [Google Scholar]
- Bergt, W. Die älteren Massengesteine, Kristalli nen Schieferund Sedimente. Ph.D. Dissertation, Verlag von Asher & Company, Berlin, Germany, 1899; pp. 199–221. [Google Scholar]
- Codazzi, R.L. Los Minerales de Muzo. Contribución al Estu dio de los Minerales de Colombia; Imprenta de la Cruzada: Bogotá, Colombia, 1915; pp. 3–7. [Google Scholar]
- Pogue, J.E. The emerald deposits of Muzo, Colombia. Trans. Am. Inst. Min. Eng. 1916, 55, 383–406. [Google Scholar]
- Bernauer, F. (Ed.) Las Llamadas Maclas Multiples de Esmeralda de Muzo y sus Anomalias Opticas; Compilación de los Estudios Geológicos Oficiales en Colombia-1917 a 1933; Imprenta Nacional: Bogotá, Colombia, 1933; pp. 199–221. [Google Scholar]
- McKague, H.L. Trapiche emeralds from Colombia. Gems Gemol. 1964, 11, 210–223. [Google Scholar]
- Müllenmeister, H.J.; Zang, J. Ein Trapiche-Rubin aus Myanmar (Burma). Lapis 1995, 20, 50. [Google Scholar]
- Henn, U.; Bank, H. Trapicheartige Korunde aus Myanmar. Gemmologie. Z. Dtsch. Gemmol. Ges. 1996, 42, 23–24. [Google Scholar]
- Schmetzer, K.; Hänni, H.A.; Bernhardt, H.J.; Schwarz, D. Trapiche rubies. Gems Gemol. 1996, 32, 242–250. [Google Scholar] [CrossRef] [Green Version]
- Schmetzer, K.; Beili, Z.; Yan, G.; Bernhardt, H.J. Element mapping of trapiche rubies. J. Gemmol. 1998, 26, 289–301. [Google Scholar] [CrossRef]
- Sunagawa, I.; Bernhardt, H.J.; Schmetzer, K. Texture formation and element partitioning in trapiche ruby. J. Cryst. Growth 1999, 206, 322–330. [Google Scholar] [CrossRef]
- Garnier, V.; Ohnenstetter, D.; Giuliani, G.; Blanc, P.; Schwarz, D. Trace-element contents and cathodoluminescence of “trapiche” rubies from Mong Hsu, Myanmar (Burma): Geological significance. Miner. Petrol. 2002, 76, 179–193. [Google Scholar] [CrossRef]
- Win, K.K. Trapiche of Myanmar. Aust. Gemmol. 2005, 22, 269–270. [Google Scholar]
- Koivula, J.I.; Kammerling, R.C.; Fritsch, E. Gem news: “Trapiche” purple-pink sapphire. Gems Gemol. 1994, 30, 197. [Google Scholar]
- Beaton, D. Lab Notes: A rare yellow trapiche sapphire. Gems Gemol. 2008, 44, 259–260. [Google Scholar]
- Khotchanin, K.; Thanasuthipitak, K.; Thanasuthipitak, T. The structure and chemical composition of trapiche blue sapphire from Southern Vietnam and Cambodia. J. Gemmol. Assoc. Hong Kong 2009, 30, 25–35. [Google Scholar]
- Kiefert, L. Unusual trapiche sapphire. Gems Gemol. 2012, 48, 229. [Google Scholar]
- Hainschwang, T.; Notari, F.; Anckar, B. Trapiche tourmaline from Zambia. Gems Gemol. 2007, 43, 36–46. [Google Scholar] [CrossRef]
- Schmetzer, K.; Bernhardt, H.J.; Hainschwang, T. Chemical and growth zoning in trapiche tourmaline from Zambia—A re-evaluation. J. Gemmol. 2011, 32, 151–173. [Google Scholar] [CrossRef]
- Krzemincki, M.S.; Laurs, B.M. Quartz with Radiating Fibres, sold as ‘Trapiche’ Quartz. J. Gemmol. 2014, 34, 296–298. [Google Scholar]
- Beaton, D. African rhodochrosite and Colombian quartz with trapiche patterns. Gems Gemol. 2016, 52, 218. [Google Scholar]
- Sun, Z.Y.; Muyal, J.; Hand, D. Trapiche-like amethyst from Brazil. Gems Gemol. 2018, 54, 237–238. [Google Scholar]
- Farfan, G.; Rakovan, J.; Ackerson, M.; Andrews, B.; Post, J. The origin of trapiche-like inclusion patterns in quartz from Inner Mongolia, China. Am. Mineral. 2021, 106, 1797–1808. [Google Scholar] [CrossRef]
- Pignatelli, I.; Giuliani, G.; Ohnenstetter, D.; Agrosi, G.; Mathieu, S.; Morlot, C.; Branquet, Y. Colombian Trapiche Emeralds: Recent Advances in Understanding Their Formation. Gems Gemol. 2015, 51, 222–259. [Google Scholar] [CrossRef]
- Garnier, V.; Ohnenstetter, D.; Giuliani, G.; Schwarz, D. Rubis trapiches de Mong Hsu, Myanmar. Rev. Gemmol. AFG 2002, 144, 5–12. [Google Scholar]
- Koivula, J.I. Gem News International: Two unusual aquamarines. Gems Gemol. 2008, 44, 275–276. [Google Scholar]
- Befi, R. Gem News International: Trapiche aquamarine fromNamibia. Gems Gemol. 2012, 48, 143–144. [Google Scholar]
- Masayuki, K.; Mutsumi, K.; Mikuni, H.; Ritsuro, M.; Hiroyuki, K.; Hiroyuki, I.; Toshiro, N. Kinetic roughening of tapered quartz and formation of trapiche quartz from Goyomatsu mine, Nara prefecture. Hist. Caribe 2016, 32, 41. [Google Scholar] [CrossRef]
- Wang, X.D.; Song, Y.J. A special type of trapiche quartz. Gems Gemol. 2019, 55, 285–286. [Google Scholar]
- Zinkernagel, U.S. Cathodoluminescence of Quartz and Its Application to Sandstone Petrology. Sedimentology 1980, 27, 235–236. [Google Scholar]
- Boiron, M.; Essarraj, S.; Sellier, E.; Cathelineau, M.; Lespinasse, M.; Poty, B. Identification of fluid inclusions in relation to their host microstructural domains in quartz by cathodoluminescence. Geochim. Cosmochim. Acta 1992, 56, 175–185. [Google Scholar] [CrossRef]
- Götze, J.; Plötze, M.; Habermann, D. Cathodoluminescence (CL) of quartz: Origin, spectral characteristics and practical applications. Mineral Petrol. Mineral. Petrol. 2001, 71, 225–250. [Google Scholar] [CrossRef]
- Rusk, B. Cathodoluminescent Textures and Trace Elements in Hydrothermal Quartz. In Quartz: Deposits, Mineralogy and Analytics; Springer Geology: Berlin/Heidelberg, Germany, 2012; pp. 307–329. [Google Scholar]
- Yu, X.Y. Colored Gemmology, 2nd ed.; Geological Publishing House: Beijing, China, 2009; pp. 144–151. [Google Scholar]
- Zhang, L.J.; Rao, J.; Zhang, C.L.; Ruan, Q.F.; Lei, W.; Liao, B.L.; He, T. Study on the Crystal Morphologies of Quartz Crystals of Different Genetic Types. Acta Mineral. Sin. 2008, 294–298. [Google Scholar] [CrossRef]
- Li, Y.Q.; She, Z.B.; Ma, C.Q. SEM-CL Analysis of Quartz and Its Application in Petrology. Adv. Earth Sci. 2011, 26, 325–331. [Google Scholar] [CrossRef]
- Li, S.R. Crystallography and Mineralogy; Geological Publishing House: Beijing, China, 2008; p. 232. [Google Scholar]
- Chen, X.J. Study on Color Mechanism and Testing Technology of Rock Crystal. Master’s Dissertation, East China University of Science and Technology, Shanghai, China, 2011. [Google Scholar]
- Ruffini, R.; Borghi, A.; Cossio, R.; Olmi, F.; Vaggelli, G. Volcanic Quartz Growth Zoning Identified by Cathodoluminescence and EPMA Studies. Mikrochim. Acta 2002, 139. [Google Scholar] [CrossRef]
- Wark, D.A.; Hildreth, W.; Spear, F.S.; Cherniak, D.; Watson, E. Pre-eruption recharge of the Bishop magma system. Geology 2007, 35, 235–238. [Google Scholar] [CrossRef]
- Wiebe, R.A.; Wark, D.A.; Hawkins, D.P. Insights from quartz cathodoluminescence zoning into crystallization of Vinalhaven granite, Coastal Mine. Contrib. Mineral. Petrol. 2007, 154, 439–453. [Google Scholar] [CrossRef]
- Wark, D.A.; Watson, E.B. Titani Q: A titanium-in-quartz geothermometer. Contrib. Mineral. Petrol. 2006, 152, 743–752. [Google Scholar] [CrossRef]
- Ji, H.W.; Li, Z.Y.; Zhang, C. Study on ore-controlling structure of uranium-molybdenum deposit in Hongshan, Hexigten County, Inner Mongolia, China. Geol. Rev. 2015, 61, 321–322. [Google Scholar]
- Li, K.; Shen, X.P. Research on Identification Characteristics of Tremolite and Actinolite by Using Nondestructive Testing Techniques of Infrared Spectroscopy and Raman Spectroscopy. Bull. Mineral. Petrol. Geochem. 2019, 38, 405–408. [Google Scholar]
- Gong, X.Y.; You, J.L.; Wang, J.; Liming, L. Simulated and Experimental Raman Spectroscopic Studies on the Micro-Structure of Several Iron Compounds. Spectrosc. Spectr. Anal. 2018, 38, 241–242. [Google Scholar]
- Gong, X.Y.; You, J.L.; Wang, J.; Liming, L.; Wan, S.M. High temperature in situ Raman Spectroscopic Studies of Several Iron Compounds. In Proceedings of the CNCLS 20, Suzhou, China, 3–5 November 2019; p. 144. [Google Scholar]
Items | No. | Na2O | SiO2 | F | Cr2O3 | K2O | MgO | MnO | Cl | CaO | Al2O3 | FeO | TiO2 | NiO | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
color zones | 1 | 0.041 | 99.351 | - | 0.007 | 0.019 | 0.021 | 0.022 | - | 0.014 | 0.054 | - | - | - | 99.534 |
2 | 0.007 | 99.517 | - | - | 0.003 | - | - | - | 0.003 | 0.050 | - | 0.015 | 0.015 | 99.610 | |
3 | 0.022 | 99.277 | - | 0.019 | 0.003 | 0.006 | 0.015 | - | - | 0.045 | 0.016 | - | - | 99.403 | |
4 | 0.001 | 100.060 | - | - | 0.004 | 0.014 | - | - | 0.009 | 0.037 | - | 0.017 | 0.029 | 100.171 | |
5 | 0.007 | 99.429 | - | 0.006 | 0.012 | - | - | - | - | 0.045 | - | - | - | 99.501 | |
6 | 0.013 | 99.400 | - | 0.008 | 0.015 | - | 0.005 | - | - | 0.108 | - | 0.017 | - | 99.566 | |
7 | 0.022 | 100.107 | - | - | 0.019 | - | 0.011 | - | - | 0.042 | - | - | 0.011 | 100.219 | |
8 | - | 99.209 | - | - | - | - | - | - | 0.018 | 0.034 | - | - | 0.014 | 99.275 | |
9 | 0.036 | 99.447 | - | - | 0.026 | 0.017 | - | - | 0.013 | 0.030 | 0.019 | - | - | 99.588 | |
10 | 0.055 | 99.152 | - | - | 0.019 | 0.006 | 0.001 | - | 0.006 | 0.032 | 0.013 | - | - | 99.284 | |
fibrous inclusions | 11 | 0.160 | 57.140 | - | - | 0.130 | 0.910 | 2.550 | 0.020 | 9.110 | 0.650 | 27.360 | - | - | 98.010 |
12 | 0.270 | 53.510 | - | - | 0.210 | 2.420 | 1.230 | 0.030 | 10.100 | 1.610 | 28.700 | 0.058 | 0.013 | 98.140 | |
13 | 0.210 | 55.880 | - | 0.028 | 0.120 | 0.970 | 2.490 | 0.030 | 9.070 | 1.070 | 28.370 | 0.019 | - | 98.230 | |
spherical inclusions | 14 | 0.460 | 10.440 | - | 0.192 | 0.210 | 0.830 | 0.650 | 0.210 | 0.600 | 0.970 | 58.550 | - | - | 73.070 |
15 | 0.100 | 5.950 | - | 0.045 | 0.060 | 0.300 | 0.360 | 0.190 | 0.370 | 0.250 | 65.640 | - | 0.042 | 73.250 | |
16 | 0.340 | 8.120 | - | 0.059 | 0.140 | 0.280 | 0.340 | 0.210 | 0.620 | 0.280 | 65.240 | 0.024 | 0.033 | 75.630 | |
17 | 0.280 | 9.850 | - | 0.041 | 0.340 | 0.450 | 0.440 | 0.200 | 0.560 | 0.490 | 63.760 | 0.012 | - | 76.370 | |
18 | 0.100 | 7.420 | - | 0.071 | 0.120 | 0.360 | 0.380 | 0.150 | 0.590 | 0.390 | 65.390 | - | 0.010 | 74.940 | |
19 | 0.320 | 13.520 | - | 0.353 | 0.450 | 1.270 | 1.080 | 0.110 | 0.480 | 1.570 | 56.300 | - | - | 75.430 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, L.; Chen, Z.; Liu, Y. The Chemical Composition of Trapiche-like Quartz from Huanggangliang Area, Inner Mongolia, China. Crystals 2022, 12, 122. https://doi.org/10.3390/cryst12010122
Jiang L, Chen Z, Liu Y. The Chemical Composition of Trapiche-like Quartz from Huanggangliang Area, Inner Mongolia, China. Crystals. 2022; 12(1):122. https://doi.org/10.3390/cryst12010122
Chicago/Turabian StyleJiang, Ling, Zhu Chen, and Yingxin Liu. 2022. "The Chemical Composition of Trapiche-like Quartz from Huanggangliang Area, Inner Mongolia, China" Crystals 12, no. 1: 122. https://doi.org/10.3390/cryst12010122
APA StyleJiang, L., Chen, Z., & Liu, Y. (2022). The Chemical Composition of Trapiche-like Quartz from Huanggangliang Area, Inner Mongolia, China. Crystals, 12(1), 122. https://doi.org/10.3390/cryst12010122