Recent Trends in Fascinating Applications of Nanotechnology in Allied Health Sciences
Abstract
:1. Introduction
2. Nanomedicine
3. Nanotechnology in Nutrition
4. Nanotechnology in Sport Equipment
5. Nanotechnology in Audiology
5.1. Nanotechnology in Dentistry
5.2. Nanotechnology in Gene Therapy
5.3. Nanotechnology in Diagnostic Techniques
5.4. Nanoparticles in MRI
5.5. Nanotechnology in Implants
5.6. Nanotechnology in Vaccine Production
5.7. Future Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Monsky, W.L.; Vien, D.S.; Link, D.P. Nanotechnology Development and Utilization: A Primer for Diagnostic and Interventional Radiologists. Radiographics 2011, 31, 1449–1462. [Google Scholar] [CrossRef] [Green Version]
- Heinz, H.; Pramanik, C.; Heinz, O.; Ding, Y.; Mishra, R.; Marchon, D.; Flatt, R.; Estrela-Lopis, I.; Llop, J.; Moya, S.; et al. Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications. Surf. Sci. Rep. 2017, 72, 1–58. [Google Scholar] [CrossRef]
- Inwati, G.; Rao, Y.; Singh, M. Thermodynamically induced in Situ and Tunable Cu Plasmonic Behaviour. Sci. Rep. 2018, 8, 3006. [Google Scholar] [CrossRef] [PubMed]
- Muktar, Y.; Bikila, T.; Keffale, M. Application of nanotechnology for animal health and production improvement: A review. World Appl. Sci. J. 2015, 33, 1588–1596. [Google Scholar]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology 2018, 16, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Huang, S.; Ravisankar, P.; Zhu, H. Two-Dimensional Nanomaterials for Photoinduced Antibacterial Applications. ACS Appl. Bio Mater. 2020, 3, 8188–8210. [Google Scholar] [CrossRef]
- Han, F.; Lv, S.; Li, Z.; Jin, L.; Fan, B.; Zhang, J.; Zhang, R.; Zhang, X.; Han, L.; Li, J. Triple-synergistic 2D material-based dual-delivery antibiotic platform. NPG Asia Mater. 2020, 12, 1–11. [Google Scholar] [CrossRef]
- Cheng, Y.; Yang, H.; Yang, Y.; Huang, J.; Wu, K.; Chen, Z.; Wang, X.; Lin, C.; Lai, Y. Progress in TiO2 nanotube coatings for biomedical applications: A review. J. Mater. Chem. B 2018, 6, 1862–1886. [Google Scholar] [CrossRef]
- El-Sayed, A.; Kamel, M. Advances in nanomedical applications: Diagnostic, therapeutic, immunization, and vaccine production. Environ. Sci. Pollut. Res. 2020, 27, 19200–19213. [Google Scholar] [CrossRef]
- Jha, R.K.; Jha, P.K.; Chaudhury, K.; Rana, S.V.; Guha, S.K. An emerging interface between life science and nanotechnology: Present status and prospects of reproductive healthcare aided by nano-biotechnology. Nano Rev. 2014, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Lai, Y.-K.; Wang, Q.; Huang, J.-Y.; Li, H.-Q.; Chen, Z.; Zhao, A.Z.-J.; Wang, Y.; Zhang, K.-Q.; Sun, H.-T.; Al-Deyab, S.S. TiO2 nanotube platforms for smart drug delivery: A review. Int. J. Nanomed. 2016, 11, 4819–4834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spivak, M.Y.; Bubnov, R.V.; Yemets, I.M.; Lazarenko, L.M.; Tymoshok, N.O.; Ulberg, Z.R. Gold nanoparticles-the theranostic challenge for PPPM: Nanocardiology application. EPMA J. 2013, 4, 18. [Google Scholar] [CrossRef] [Green Version]
- Zhu, T.; Mao, J.; Cheng, Y.; Liu, H.; Lv, L.; Ge, M.; Li, S.; Huang, J.; Chen, Z.; Li, H.; et al. Recent Progress of Polysaccharide-Based Hydrogel Interfaces for Wound Healing and Tissue Engineering. Adv. Mater. Interfaces 2019, 6, 1900761. [Google Scholar] [CrossRef] [Green Version]
- Qin, W.; Ding, D.; Liu, J.; Yuan, W.Z.; Hu, Y.; Liu, B.; Tang, B.Z. Biocompatible nanoparticles with aggregation-induced emission characteristics as far-red/near-infrared fluorescent bioprobes for in vitro and in vivo imaging applications. Adv. Funct. Mater. 2012, 22, 771–779. [Google Scholar] [CrossRef]
- Schwartz, J.A.; Shetty, A.M.; Price, R.E.; Stafford, R.J.; Wang, J.C.; Uthamanthil, R.K.; Pham, K.; McNichols, R.J.; Coleman, C.L.; Payne, J.D. Feasibility study of particle-assisted laser ablation of brain tumors in orthotopic canine model. Cancer Res. 2009, 69, 1659–1667. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Chen, L. Quantum dots, lighting up the research and development of nanomedicine. Nanomed. Nanotechnol. Biol. Med. 2011, 7, 385–402. [Google Scholar] [CrossRef]
- Wagh, A.; Qian, S.Y.; Law, B. Development of Biocompatible Polymeric Nanoparticles for in Vivo NIR and FRET Imaging. Bioconjugate Chem. 2012, 23, 981–992. [Google Scholar] [CrossRef]
- Zhu, T.; Cheng, Y.; Cao, C.; Mao, J.; Li, L.; Huang, J.; Gao, S.; Dong, X.; Chen, Z.; Lai, Y. A semi-interpenetrating network ionic hydrogel for strain sensing with high sensitivity, large strain range, and stable cycle performance. Chem. Eng. J. 2020, 385, 123912. [Google Scholar] [CrossRef]
- Sanna, V.; Pintus, G.; Roggio, A.M.; Punzoni, S.; Posadino, A.M.; Arca, A.; Marceddu, S.; Bandiera, P.; Uzzau, S.; Sechi, M. Targeted Biocompatible Nanoparticles for the Delivery of (−)-Epigallocatechin 3-Gallate to Prostate Cancer Cells. J. Med. Chem. 2011, 54, 1321–1332. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, J.-Y.; Li, H.-Q.; Zhao, A.Z.-J.; Wang, Y.; Zhang, K.-Q.; Sun, H.-T.; Lai, Y.-K. Recent advances on smart TiO2 nanotube platforms for sustainable drug delivery applications. Int. J. Nanomed. 2016, 12, 151–165. [Google Scholar] [CrossRef] [Green Version]
- Aswathy, R.G.; Sivakumar, B.; Brahatheeswaran, D.; Fukuda, T.; Yoshida, Y.; Maekawa, T.; Kumar, D.S. Biocompatible fluorescent zein nanoparticles for simultaneous bioimaging and drug delivery application. Adv. Nat. Sci. Nanosci. Nanotechnol. 2012, 3, 025006. [Google Scholar] [CrossRef]
- Roullin, V.G.; Callewaert, M.; Molinari, M.; Delavoie, F.; Seconde, A.; Andry, M.C. Optimised NSAIDs-loaded biocompatible nanoparticles. Nano-Micro Lett. 2010, 2, 247–255. [Google Scholar] [CrossRef]
- Bhatia, P.; Vasaikar, S.; Wali, A. A landscape of nanomedicine innovations in India. Nanotechnol. Rev. 2018, 7, 131–148. [Google Scholar] [CrossRef]
- Kulkarni, A.S.; Ghugre, P.S.; Udipi, S.A. Applications of nanotechnology in nutrition: Potential and safety issues. Nov. Approaches Nanotechnol. Food 2016, 509–554. [Google Scholar] [CrossRef]
- Moraru, C.I.; Panchapakesan, C.P.; Huang, Q.; Takhistov, P.; Liu, S.; Kokini, J.L. Nanotechnology: A new frontier in food science understanding the special properties of materials of nanometer size will allow food scientists to design new, healthier, tastier, and safer foods. Nanotechnology 2003, 57, 24–29. [Google Scholar]
- Nickols-Richardson, S.M. Nanotechnology: Implications for food and nutrition professionals. J. Am. Diet. Assoc. 2007, 107, 1494–1497. [Google Scholar] [CrossRef]
- Omanović-Mikličanin, E. Application and Impact of Nanotechnology in Sport. In Proceedings of the 30th Scientific-Experts Conference of Agriculture and Food Industry, Sarajevo, Bosnia, Herzegovina, 26–27 September 2019; pp. 349–362. [Google Scholar]
- McPherson, B. Innovative technology in hearing instruments: Matching needs in the developing world. Trends Amplif. 2011, 15, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Lin, W. Improve reliability of hearing instruments using nano technology. In Proceedings of the 2015 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), Changchun, China, 5–9 October 2015. [Google Scholar]
- Abiodun-Solanke, I.M.F.; Ajayi, D.M.; Arigbede, A.O. Nanotechnology and its application in dentistry. Ann. Med. Health Sci. Res. 2014, 4, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Rybachuk, A.V.; Chekman, I.S.; Nebesna, T.Y. Nanotechnology and nanoparticles in dentistry. Pharm. Pharm 2009, 1, 18–21. [Google Scholar]
- Matar, R.; Soleimani, M.; Merheb, M. Human gene therapy—The future of health care. Hamdan Med. J. 2015, 8, 101–110. [Google Scholar] [CrossRef]
- Kumar, P.; Mathpal, M.C.; Inwati, G.; Ghosh, S.; Kumar, V.; Roos, W.; Swart, H. Optical and surface properties of Zn doped CdO nanorods and antimicrobial applications. Colloids Surf. A: Physicochem. Eng. Asp. 2020, 605, 125369. [Google Scholar] [CrossRef]
- Dufes, C.; Uchegbu, I.; Schatzlein, A. Dendrimers in gene delivery. Adv. Drug Deliv. Rev. 2005, 57, 2177–2202. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, P.; Han, G.; De, M.; Kim, C.K.; Rotello, V.M. Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev. 2008, 60, 1307–1315. [Google Scholar] [CrossRef]
- Lyberopoulou, A.; Efstathopoulos, E.P.; Gazouli, M. Nanotechnology-Based Rapid Diagnostic Tests. Proof Concepts Rapid Diagn. Tests Technol. 2016, 7, 89–105. [Google Scholar]
- Crich, S.G.; Bussolati, B.; Tei, L.; Grange, C.; Esposito, G.; Lanzardo, S.; Camussi, G.; Aime, S. Magnetic Resonance Visualization of Tumor Angiogenesis by Targeting Neural Cell Adhesion Molecules with the Highly Sensitive Gadolinium-Loaded Apoferritin Probe. Cancer Res. 2006, 66, 9196–9201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preda, A.; van Vliet, M.; Krestin, G.P.; Brasch, R.C.; van Dijke, C.F. Magnetic resonance macromolecular agents for monitoring tumor microvessels and angiogenesis inhibition. Investig. Radiol. 2006, 41, 325–331. [Google Scholar] [CrossRef]
- Kiessling, F.; Morgenstern, B.; Zhang, C. Contrast agents and applications to assess tumor angiogenesis in vivo by magnetic resonance imaging. Curr. Med. Chem. 2007, 14, 77–91. [Google Scholar] [CrossRef]
- Winter, P.; Cai, K.; Chen, J.; Adair, C.R.; Kiefer, G.E.; Athey, P.S.; Gaffney, P.J.; Buff, C.E.; Robertson, J.; Caruthers, S.D.; et al. Targeted PARACEST nanoparticle contrast agent for the detection of fibrin. Magn. Reson. Med. 2006, 56, 1384–1388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phinikaridou, A.; Andia, M.E.; Saha, P.; Modarai, B.; Smith, A.; Botnar, R.M. In vivo magnetization transfer and diffusion-weighted magnetic resonance imaging detects thrombus composition in a mouse model of deep vein thrombosis. Circ. Cardiovasc. Imaging 2013, 6, 433–440. [Google Scholar] [CrossRef] [Green Version]
- Cassidy, M.C.; Chan, H.R.; Ross, B.D.; Bhattacharya, P.K.; Marcus, C.M. In vivo magnetic resonance imaging of hyperpolarized silicon particles. Nat. Nanotechnol. 2013, 8, 363–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leike, J.; Sachse, A.; Ehritt, C. Biodistribution and Ct-Imaging Characteristics of Iopromide-Carrying Liposomes in Rats. J. Liposome Res. 1996, 6, 665–680. [Google Scholar] [CrossRef]
- Torchilin, V.P.; Frank-Kamenetsky, M.D.; Wolf, G.L. CT visualization of blood pool in rats by using long-circulating, iodine-containing micelles. Acad. Radiol. 1999, 6, 61–65. [Google Scholar] [CrossRef]
- Liu, Y.; Ai, K.; Liu, J.; Yuan, Q.; He, Y.; Lu, L. Hybrid BaYbF5 Nanoparticles: Novel Binary Contrast Agent for High-Resolution in Vivo X-ray Computed Tomography Angiography. Adv. Healthc. Mater. 2012, 1, 461–466. [Google Scholar] [CrossRef]
- Jakhmola, A.; Anton, N.; Vandamme, T.F. Inorganic Nanoparticles Based Contrast Agents for X-ray Computed Tomography. Adv. Heal. Mater. 2012, 1, 413–431. [Google Scholar] [CrossRef]
- Bzyl, J.; Lederle, W.; Rix, A.; Grouls, C.; Tardy, I.; Pochon, S.; Siepmann, M.; Penzkofer, T.; Schneider, M.; Kiessling, F.; et al. Molecular and functional ultrasound imaging in differently aggressive breast cancer xenografts using two novel ultrasound contrast agents (BR55 and BR38). Eur. Radiol. 2011, 21, 1988–1995. [Google Scholar] [CrossRef]
- Rabin, O.; Perez, J.M.; Grimm, J.; Wojtkiewicz, G.; Weissleder, R. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat. Mater. 2006, 5, 118–122. [Google Scholar] [CrossRef]
- Kiessling, F.; Bzyl, J.; Fokong, S.; Siepmann, M.; Schmitz, G.; Palmowski, M. Targeted Ultrasound Imaging of Cancer: An Emerging Technology on its Way to Clinics. Curr. Pharm. Des. 2012, 18, 2184–2199. [Google Scholar] [CrossRef]
- Pysz, M.A.; Foygel, K.; Rosenberg, J.; Gambhir, S.S.; Schneider, M.; Willmann, J.K. Antiangiogenic cancer therapy: Monitoring with molecular US and a clinically translatable contrast agent (BR55). Radiology 2010, 256, 519–527. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Cui, Y.; Levenson, R.M.; Chung, L.W.K.; Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 2004, 22, 969–976. [Google Scholar] [CrossRef] [PubMed]
- Kang, E.; Min, H.S.; Lee, J.; Han, M.H.; Ahn, H.J.; Yoon, I.C.; Choi, K.; Kim, K.; Park, K.; Kwon, I.C. Nanobubbles from gas-generating polymeric nanoparticles: Ultrasound imaging of living subjects. Angew. Chem. Int. Ed. 2010, 49, 524–528. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Jeon, J.; Hong, S.H.; Rhim, W.K.; Lee, Y.S.; Youn, H.; Chung, J.K.; Lee, M.C.; Lee, D.S.; Kang, K.W.; et al. Tumor targeting and imaging using cyclic RGD-PEGylated gold nanoparticle probes with directly conjugated iodine-125. Small 2011, 7, 2052–2060. [Google Scholar] [CrossRef] [PubMed]
- Santra, S.; Dutta, D.; Walter, G.A.; Moudgil, B.M. Fluorescent Nanoparticle Probes for Cancer Imaging. Technol. Cancer Res. Treat. 2005, 4, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Li, W.; Kim, C.H.; Yuan, Y.; Wang, L.V.; Xia, Y. In vivo quantitative evaluation of the transport kinetics of gold nanocages in a lymphatic system by noninvasive photoacoustic tomography. ACS Nano 2011, 5, 9658–9667. [Google Scholar] [CrossRef] [Green Version]
- De La Zerda, A.; Zavaleta, C.; Keren, S.; Vaithilingam, S.; Bodapati, S.; Liu, Z.; Levi, J.; Smith, B.; Ma, T.-J.; Oralkan, O.; et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol. 2008, 3, 557–562. [Google Scholar] [CrossRef]
- Xie, H.; Wang, Z.J.; Bao, A.; Goins, B.; Phillips, W.T. In vivo PET imaging and biodistribution of radiolabeled gold nanoshells in rats with tumor xenografts. Int. J. Pharm. 2010, 395, 324–330. [Google Scholar] [CrossRef]
- Majmudar, M.D.; Yoo, J.; Keliher, E.J.; Truelove, J.J.; Iwamoto, Y.; Sena, B.; Dutta, P.; Borodovsky, A.; Fitzgerald, K.; Di Carli, M.F.; et al. Polymeric nanoparticle PET/MR imaging allows macrophage detection in atherosclerotic plaques. Circ. Res. 2013, 112, 755–761. [Google Scholar] [CrossRef] [Green Version]
- Ocampo-García, B.E.; Ramírez, F.D.M.; Ferro-Flores, G.; De León-Rodríguez, L.M.; Santos-Cuevas, C.L.; Morales-Avila, E.; de Murphy, C.A.; Pedraza-López, M.; Medina, L.A.; Camacho-López, M.A. 99mTc-labelled gold nanoparticles capped with HYNIC-peptide/mannose for sentinel lymph node detection. Nuclear Med. Biol. 2011, 38, 1–11. [Google Scholar] [CrossRef]
- Koukouraki, K.S.; Giatromanolaki, A.; Kakolyris, S.; Georgoulias, V.; Velidaki, A.; Archimandritis, S.; Karkavitsas, N.N. High intratumoral accumulation of stealth liposomal doxorubicin in sarcomas: Rationale for combination with radiotherapy. Acta Oncol. 2000, 39, 207–211. [Google Scholar]
- Beltrán-Gracia, E.; López-Camacho, A.; Higuera-Ciapara, I.; Velázquez-Fernández, J.B.; Vallejo-Cardona, A.A. Nanomedicine review: Clinical developments in liposomal applications. Cancer Nanotechnol. 2019, 10, 11. [Google Scholar] [CrossRef]
- Avasthi, A.; Caro, C.; Pozo-Torres, E.; Leal, P.M.; García-Martí, M.L. Magnetic Nanoparticles as MRI Contrast Agents. Top. Curr. Chem. Vol. 2020, 40, 1–43. [Google Scholar] [CrossRef]
- Caspani, S.; Magalhães, R.; Araújo, J.P.; Sousa, C.T. Magnetic nanomaterials as contrast agents for MRI. Materials 2020, 13, 2586. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, E.M.; Skrtic, S.; Sharer, K.; Hill, J.M.; Dunbar, C.; Koretsky, A. MRI detection of single particles for cellular imaging. Proc. Natl. Acad. Sci. USA 2004, 101, 10901–10906. [Google Scholar] [CrossRef] [Green Version]
- Lavenus, S.; Louarn, G.; Layrolle, P. Nanotechnology and Dental Implants. Int. J. Biomater. 2010, 2010, 915327. [Google Scholar] [CrossRef] [PubMed]
- Puértolas, J.; Kurtz, S. Evaluation of carbon nanotubes and graphene as reinforcements for UHMWPE-based composites in arthroplastic applications: A review. J. Mech. Behav. Biomed. Mater. 2014, 39, 129–145. [Google Scholar] [CrossRef]
- Dobrovolskaia, M.A.; Shurin, M.R.; Shvedova, A.A. Current understanding of interactions between nanoparticles and the immune system. Toxicol. Appl. Pharmacol. 2016, 299, 78–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordly, P.; Madsen, H.B.; Nielsen, H.M.; Foged, C. Status and future prospects of lipid-based particulate delivery systems as vaccine adjuvants and their combination with immunostimulators. Expert Opin. Drug Deliv. 2009, 6, 657–672. [Google Scholar] [CrossRef]
- Shin, M.D.; Shukla, S.; Chung, Y.H.; Beiss, V.; Chan, S.K.; Ortega-Rivera, O.A.; Wirth, D.M.; Chen, A.; Sack, M.; Pokorski, J.K.; et al. COVID-19 vaccine development and a potential nanomaterial path forward. Nat. Nanotechnol. 2020, 15, 646–655. [Google Scholar] [CrossRef]
- Li, W.; Joshi, M.D.; Singhania, S.; Ramsey, K.H.; Murthy, A.K. Peptide Vaccine: Progress and Challenges. Vaccines 2014, 2, 515–536. [Google Scholar] [CrossRef] [Green Version]
- Shah, M.A.A.; He, N.; Li, Z.; Ali, Z.; Zhang, L. Nanoparticles for DNA vaccine delivery. J. Biomed. Nanotechnol. 2014, 10, 2332–2349. [Google Scholar] [CrossRef]
- Inwati, G.; Rao, Y.; Singh, M. Single step aqueous synthesis of unsupported PtNi nanoalloys using flower extract as reducing agent and their compositional role to enhance electrocatalytic activity. AIP Conf. Proc. 2017, 1837, 040048. [Google Scholar]
- Kumar, P.; Inwati, G.K.; Mathpal, M.C.; Ghosh, S.; Roos, W.; Swart, H. Defects induced Enhancement of Antifungal activities of Zn doped CuO nanostructures. Appl. Surf. Sci. 2021, 560, 150026. [Google Scholar] [CrossRef]
- Inwati, G.; Rao, Y. Metal Oxide based Nanoparticles use for Pressure Sensor. Int. J. Curr. Eng. Technol. 2014, 4, 2347–5161. [Google Scholar]
- Malik, P.; Inwati, G.K.; Mukherjee, T.K.; Singh, S.; Singh, M. Green silver nanoparticle and Tween-20 modulated pro-oxidant to antioxidant curcumin transformation in aqueous CTAB stabilized peanut oil emulsions. J. Mol. Liq. 2019, 291, 111252. [Google Scholar] [CrossRef]
- Gnanamoorthy, G.; Ramar, K.; Padmanaban, A.; Yadav, V.K.; Babu, K.S.; Karthikeyan, V.; Narayanan, V. Implementation of ZnSnO3 nanosheets and their RE (Er, Eu, and Pr) materials: Enhanced photocatalytic activity. Adv. Powder Technol. 2020, 31, 1209–1219. [Google Scholar] [CrossRef]
- Yadav, V.K.; Suriyaprabha, R.; Khan, S.H.; Singh, B.; Gnanamoorthy, G.; Choudhary, N.; Yadav, A.K.; Kalasariya, H. A novel and efficient method for the synthesis of amorphous nanosilica from fly ash tiles. Mater. Today Proc. 2020, 26, 701–705. [Google Scholar] [CrossRef]
- Khan, M.; Khan, A.; Hasan, M.; Yadav, K.; Pinto, M.; Malik, N.; Yadav, V.; Khan, A.; Islam, S.; Sharma, G. Agro-Nanotechnology as an Emerging Field: A Novel Sustainable Approach for Improving Plant Growth by Reducing Biotic Stress. Appl. Sci. 2021, 11, 2282. [Google Scholar] [CrossRef]
- Gnanamoorthy, G.; Ali, D.; Yadav, V.K.; Dhinagaran, G.; Venkatachalam, K.; Narayanan, V. New construction of Fe3O4/rGO/ZnSnO3 nanocomposites enhanced photoelectro chemical properties. Opt. Mater. 2020, 109, 110353. [Google Scholar] [CrossRef]
- Gnanamoorthy, G.; Priya, P.; Ali, D.; Lakshmi, M.; Yadav, V.K.; Varghese, R. A new CuZr2S4/rGO and their reduced graphene oxide nanocomposities enhanced photocatalytic and antimicrobial activities. Chem. Phys. Lett. 2021, 781, 139011. [Google Scholar] [CrossRef]
- Soares, S.; Sousa, J.; Pais, A.; Vitorino, C. Nanomedicine: Principles, properties, and regulatory issues. Front. Chem. 2018, 6, 360. [Google Scholar] [CrossRef]
- Agrahari, V.; Hiremath, P. Challenges associated and approaches for successful translation of nanomedicines into commercial products. Nanomedicine 2017, 12, 819–823. [Google Scholar] [CrossRef] [Green Version]
- Desai, N. Challenges in Development of Nanoparticle-Based Therapeutics. AAPS J. 2012, 14, 282–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Types of Nanomaterials | Applications |
---|---|
Metal/metal-oxide nanoparticles | Enhanced drug loading and releasing action, permeation characters, |
Carriers or agents for MRI and ultrasound image | |
Used in apoptosis and angiogenesis. | |
CNT | Diagnosis in DNA transformation |
biomarker for changes in protein structure | |
Nanocrystals | Enhanced soluble drug formulation |
Nanocore shells | Contrast imaging for tumors |
1D, 2D nanostructures | Accurate throughput scanning |
Detector for protein diseases | |
Detection of DNA mutation | |
Diagnosis of gene mutation | |
0D (quantum dots) | Diagnosis of gene and protein structures due to optical properties |
Detection of tumor and lymph nodes |
Nanomaterial | Respective Nanomedicine | Biomedical Applications | Properties | References |
---|---|---|---|---|
Gold NPs | Verigene | In vitro studies | Genetic | [14] |
Nanogoldhn nm, mmv, or colloid Au NPs | Loading and releasing agents for Drugs. Enhanced bioimaging | Optoelectronic features due to Controlled Surface and band positions | [15] | |
Aurimm une | Anticancer | Anticancer impacts | [16] | |
AIE-active fluorogen-loaded BSA NPs | Fluorogen, 2-(2,6,bis((E)-4-(phenyl(4-(1,2,2-triphenylvinyl)-[1,1 biphenyl]4-yl)amino)styryl)-4Hpyran-4-ylidene)malononitrite(TPE-TPA-DCM) | advanced uptake tendency for cancer cells and in vitro and in vivo studies | Improved penetrability with good stability | [17] |
Nano-shell | Auro-shell | Aeroshell Semiconductor | Neck and head targets | [18] |
Quantum-dots | Qdots, EviTags | In vitro studies | Tumor-based cell studies | [19] |
Semiconductor | Nanoco, CrystalPlex, cytodiagnostics | Enhanced Fluorescence study | Molecular sensing inside tissue cells | [20,21] |
Self-assembled chitosan (CHI) and modified lecithin (ML) | Biosuitable and stable nanosystems | Several applications, such as reversible hemostatic activities in wounds, nanocarriers for drugs, etc. | Higher encapsulation performance with strong ionic nature, solubility, or lyophilized solid or rigorous colloidal system | [22] |
Targeted polymer NPs loaded with (-) epigallocatechin 3-gallate (EGCG) | Chemotherapeutic markers | Stronger anticancer for prostate cancer (PCa) | Marker for prostate-specific membrane antigen (PSMA) | [23] |
Organically modified silica nanoparticles | Biocompatible NPs | In vivo neuron targeting without harming the whole organism or causing neuronal death | Actively useful for insertion into neuronal cell bodies, living brains, and suitable axonal projections | [24] |
Polydopamine fluorescent organic NPs | Biocompatible NPs | Bioimaging of tissue, and cells | Controlled photoluminescence response | [18] |
5-Fluorouracil (5-FU) loaded biocompatible fluorescence zein NPs | Semisolids, solution-based, and solid nanosystems | Drug delivery and imaging in biosystem | Kinetic rate and controlled delivery of drug under biocompatible process | [25] |
Non-steroidal anti-inflammatory (NSAIDs)-loaded NPs | A biocompatible formulation for a drug nanosystem | Surface modifications in a prosthesis superficial alterations | Controlled drug release | [26] |
Company | Project Title |
---|---|
Lifecare Innovations Pvt Ltd. | Production of poly(lactide-co-glycolide) nanoparticles (PLG-NP) and poly (lactide-co-glycollde)nanoparticles encapsulating antitubercular drugs (rifampicin, Isonlazld, and pyrazinamide-PLG-NP-ATDs)In GMP facilities |
Rasayanl Biologics Pvt Ltd. | Evaluation of platinum nanoparticles for the treatment of hormone-refractory prostate cancer |
Imgenex India Pvt Ltd. | Nanotechnological-based delivery of peptide inhibitors for the treatment of Osteoporosis |
Jupiter Bioscience Ltd. | Development, optimization, and characterization of ligand RGD peptide-targeted nano-constructs encapsulating anticancer chemotherapeutic agents for the effective treatment of lung cancer with Gemcitabine and stabilization of lyophilized or spray-dried formulation for direct local delivery or by injection via systemic circulation |
Nanosniff Technologies Pvt Ltd. | Development of a prototype instrument (sensor and detection electronics) to detect heart binding protein (hFAbP) |
Onisome Healthcare Pvt Ltd. | Bleomycin sulfate bearing nanostructured lipid particles for targeting brain cancer |
Rellsys Medical Devices Ltd. | Manufacture and clinical evaluation of non-polymeric nanocarbon porous matrix drug-eluting stent DES |
V.B. Medicare Pvt Ltd. | Development and characterization of lipid carrier-based nanogel formulation for 5-Fluorouracil |
Imaging Method | Advantages | Disadvantages | Nanoparticles Used | Reference |
---|---|---|---|---|
MRI |
|
|
| [44,45,46,47,48,49] |
CT |
|
|
| [50,51,52,53] |
Ultrasound |
|
|
| [54,55,56,57,58,59] |
Optical Imaging |
|
|
| [58,60,61] |
Photoacoustic imaging |
|
|
| [62,63] Akers WJ 2011 |
Positron emission tomography |
|
|
| [64,65] |
Single-photon emission CT |
|
|
| [66,67,68] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modi, S.; Prajapati, R.; Inwati, G.K.; Deepa, N.; Tirth, V.; Yadav, V.K.; Yadav, K.K.; Islam, S.; Gupta, P.; Kim, D.-H.; et al. Recent Trends in Fascinating Applications of Nanotechnology in Allied Health Sciences. Crystals 2022, 12, 39. https://doi.org/10.3390/cryst12010039
Modi S, Prajapati R, Inwati GK, Deepa N, Tirth V, Yadav VK, Yadav KK, Islam S, Gupta P, Kim D-H, et al. Recent Trends in Fascinating Applications of Nanotechnology in Allied Health Sciences. Crystals. 2022; 12(1):39. https://doi.org/10.3390/cryst12010039
Chicago/Turabian StyleModi, Shreya, Rajendra Prajapati, Gajendra Kumar Inwati, Nikky Deepa, Vineet Tirth, Virendra Kumar Yadav, Krishna Kumar Yadav, Saiful Islam, Parul Gupta, Do-Hyeon Kim, and et al. 2022. "Recent Trends in Fascinating Applications of Nanotechnology in Allied Health Sciences" Crystals 12, no. 1: 39. https://doi.org/10.3390/cryst12010039
APA StyleModi, S., Prajapati, R., Inwati, G. K., Deepa, N., Tirth, V., Yadav, V. K., Yadav, K. K., Islam, S., Gupta, P., Kim, D. -H., & Jeon, B. -H. (2022). Recent Trends in Fascinating Applications of Nanotechnology in Allied Health Sciences. Crystals, 12(1), 39. https://doi.org/10.3390/cryst12010039