Synthesis and Solid-State X-ray Structure of the Mononuclear Palladium(II) Complex Based on 1,2,3-Triazole Ligand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Triazole Ligand 3
2.2. Synthesis of [Pd(3)2Cl2] Complexcomplex, 4
2.3. X-ray Structure Determinations
2.4. Hirshfeld Surface Analysis
3. Results and Discussion
3.1. Crystal Structure Description of Triazole Ligand 3
3.2. Crystal Structure Description of [Pd(3)2Cl2] Complex 4
3.3. Hirshfeld Surface Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, S.; Sharma, B.; Mehra, V.; Kumar, V. Recent accomplishments on the synthetic/biological facets of pharmacologically active 1H-1,2,3-triazoles. Eur. J. Med. Chem. 2021, 212, 113069. [Google Scholar] [CrossRef] [PubMed]
- Aouad, M.R.; Almehmadi, M.A.; Rezki, N.; Al-blewi, F.F.; Messali, M.; Ali, I. Design, click synthesis, anticancer screening and docking studies of novel benzothiazole-1,2,3-triazoles appended with some bioactive benzofused heterocycles. J. Mol. Struct. 2019, 1188, 153–164. [Google Scholar] [CrossRef]
- Tan, A. Novel 1,2,3-triazole compounds: Synthesis, In vitro xanthine oxidase inhibitory activity, and molecular docking studies. J. Mol. Struct. 2020, 1211, 128060. [Google Scholar] [CrossRef]
- Haider, S.; Alam, M.S.; Hamid, H. 1,2,3-Triazoles: Scaffold with medicinal significance. Inflamm. Cell Signal 2014, 1, e95. [Google Scholar]
- Totobenazara, J.; Burke, A.J. New click-chemistry methods for 1,2,3-triazoles synthesis: Recent advances and applications. Tetrahedron Lett. 2015, 56, 2853–2859. [Google Scholar] [CrossRef]
- Sajja, Y.; Vanguru, S.; Vulupala, H.R.; Bantu, R.; Yogeswari, P.; Sriram, D.; Nagarapu, L. Design, synthesis and in vitro anti-tuberculosis activity of benzo [6,7] cyclohepta [1,2-b] pyridine 1,2,3-triazole derivatives. Bioorg. Med. Chem. Lett. 2017, 27, 5119–5121. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Hu, X.; Duan, C.; Liu, P.; Liu, S.; Lan, L.; Chen, D.; Ying, L.; Su, S.; Gong, X. A series of new medium-bandgap conjugated polymers based on naphtho [1,2-c:5,6-c] bis (2-octyl-[1,2,3] triazole) for high-performance polymer solar cells. Adv. Mater. 2013, 25, 3683–3688. [Google Scholar] [CrossRef] [PubMed]
- Beccalli, E.M.; Broggini, G.; Martinelli, M.; Sottocornola, S. C−C, C−O, C−N bond formation on sp 2 carbon by Pd (II)-catalyzed reactions involving oxidant agents. Chem. Rev. 2007, 107, 5318–5365. [Google Scholar] [CrossRef]
- Nicolaou, K.C.; Bulger, P.G.; Sarlah, D. Palladium-Catalyzed Cross-Coupling Reactions in Total Synthesis. Angew. Chem. Int. Ed. 2005, 44, 4442–4489. [Google Scholar] [CrossRef]
- Ruiz-Castillo, P.; Buchwald, S.L. Applications of Palladium-Catalyzed C–N Cross-Coupling Reactions. Chem. Rev. 2016, 1163, 12564–12649. [Google Scholar] [CrossRef]
- Leone, A.K.; Mueller, E.A.; McNeil, A.J. The History of Palladaium-Catalyzed CrossCouplings Should Inspire the Future of Catalyst-Transfer Polymerization. J. Am. Chem. Soc. 2018, 140, 15126–15139. [Google Scholar] [CrossRef] [PubMed]
- Leone, A.K.; Goldberg, P.K.; McNeil, A.J. Ring-Walking in Catalyst-Transfer Polymerization. J. Am. Chem. Soc. 2018, 140, 7846–7850. [Google Scholar] [CrossRef] [PubMed]
- Devendar, P.; Qu, R.-Y.; Kang, W.-M.; He, B.; Yang, G.-F. Palladium-Catalyzed CrossCoupling Reactions: A Powerful Tool for the Synthesis of Agrochemicals. J. Agric. Food Chem. 2018, 66, 8914–8934. [Google Scholar] [CrossRef]
- Torborg, C.; Beller, M. Recent Applications of PalladiumCatalyzed Coupling Reactions in the Pharmaceutical, Agrochemical, and Fine Chemical Industries. Adv. Synth. Catal. 2009, 351, 3027–3043. [Google Scholar] [CrossRef]
- Brown, D.G.; Boström, J. Analysis of Past and Present Synthetic Methodologies on Medicinal Chemistry: Where Have All the New Reactions Gone? J. Med. Chem. 2016, 59, 4443–4458. [Google Scholar] [CrossRef]
- Gesmundo, N.J.; Sauvagnat, B.; Curran, P.J.; Richards, M.P.; Andrews, C.L.; Dandliker, P.J.; Cernak, T. Nanoscale synthesis and affinity ranking. Nature 2018, 557, 228–232. [Google Scholar] [CrossRef]
- Goodyear, A.; Linghu, X.; Bishop, B.; Chen, C.; Cleator, E.; McLaughlin, M.; Sheen, F.J.; Stewart, G.W.; Xu, Y.; Yin, J. Process Development and Large-Scale Synthesis of MK06186, a Non-Nucleoside Reverse Transcriptase Inhibitor for the Treatment of HIV. Org. Process Res. Dev. 2012, 16, 605–611. [Google Scholar] [CrossRef]
- Rayadurgam, J.; Sana, S.; Sasikumar, M.; Gu, A. Palladium catalyzed C–C and C–N bond forming reactions: An update on the synthesis of pharmaceuticals from 2015–2020. Org. Chem. Front. 2021, 8, 384–414. [Google Scholar] [CrossRef]
- Negishi, E. (Ed.) Handbook of Organopalladium Chemistry for Organic Synthesis; Wiley-Interscience: New York, NY, USA, 2002. [Google Scholar]
- Tsuji, J. Palladium Reagents and Catalysts: Innovations in Organic Synthesis; Wiley and Sons: New York, NY, USA, 1995. [Google Scholar]
- Tsuji, J. Palladium Reagents and Catalysts: New Perspectives for the 21st Century; Wiley and Sons: New York, NY, USA, 2003. [Google Scholar]
- Tsuji, J. Palladium in Organic Synthesis; Springer: Berlin, Germany, 2005. [Google Scholar]
- Heck, R.F. Palladium Reagents in Organic Synthesis; Academic Press: New York, NY, USA, 1985. [Google Scholar]
- Li, J.J.; Gribble, G.W. Palladium in Heterocyclic Chemistry; Pergamon: New York, NY, USA, 2000. [Google Scholar]
- Heumann, A.; Jens, K.-J.; Reglier, M. Progress in Inorganic Chemistry. Karlin, K.D., Ed.; Wiley and Sons: New York, NY, USA, 1994; Volume 42, pp. 483–576. [Google Scholar]
- Galanski, M. Recent developments in the field of anticancer platinum complexes. Recent Pat. Anti-Cancer Drug Discov. 2006, 1, 285–295. [Google Scholar] [CrossRef]
- Gao, E.; Liu, C.; Zhu, M.; Lin, H.; Wu, Q.; Liu, L. Current development of Pd(II) complexes as potential antitumor agents. Anti-Cancer Agents Med. Chem. 2009, 9, 356–368. [Google Scholar] [CrossRef]
- Abu-Surrah, A.S.; Safieh, K.A.A.; Ahmad, I.M.; Abdalla, M.Y.; Ayoub, M.T.; Qaroush, A.K.; Abu-Mahtheieh, A.M. New palladium(II) complexes bearing pyrazole-based Schiff base ligands: Synthesis, characterization and cytotoxicity. Eur. J. Med. Chem. 2010, 45, 471–475. [Google Scholar] [CrossRef]
- Gill, D.S. Structure activity relationship of antitumor palladium complexes. In Platinum Coordination Complexes in Cancer Chemotherapy; Hacker, M.P., Douple, E.B., Krakoff, I.H., Eds.; Developments in Oncology; Springer: New York, NY, USA, 1984; Volume 17, pp. 267–278. [Google Scholar]
- Al-Masoudi, N.A.; Abdullah, B.H.; Essa, A.H.; Loddo, R.; LaColla, P. Platinum and palladium-triazole complexes as highly potential antitumor agents. Arch. Pharm. 2010, 343, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Santosh, R.; Selvam, M.K.; Kanekar, S.U.; Nagaraja, G.K. Synthesis, characterization, antibacterial and antioxidant studies of some heterocyclic compounds from triazole-linked chalcone derivatives. ChemistrySelect 2018, 3, 6338–6343. [Google Scholar] [CrossRef]
- Shafran, Y.M.; Beryozkina, T.V.; Efimov, I.V.; Bakulev, V.A. Synthesis of β-azolyl-and β-azolylcarbonylenamines and their reactions with aromatic azides. Chem. Heterocycl. Compd. 2019, 55, 704–715. [Google Scholar] [CrossRef]
- Elgogary, S.R.; Khidre, R.E.; El-Telbani, E.M. Regioselective synthesis and evaluation of novel sulfonamide 1,2,3-triazole derivatives as antitumor agents. J. Iran. Chem. Soc. 2020, 17, 765–776. [Google Scholar] [CrossRef]
- Singh, H.; Sindhu, J.; Khurana, J.M. Synthesis of biologically as well as industrially important 1,4,5-trisubstituted-1,2,3-triazoles using a highly efficient, green and recyclable DBU–H2O catalytic system. RSC Adv. 2013, 3, 22360–22366. [Google Scholar] [CrossRef]
- Amoah, C.; Obuah, C.; Ainooson, M.K.; Muller, A. Synthesis, characterization and fluorescent properties of ferrocenyl pyrazole and triazole ligands and their palladium complexes. J. Organomet. Chem. 2021, 935, 121664. [Google Scholar] [CrossRef]
- Altowyan, M.S.; Soliman, S.M.; Haukka, M.; Al-Shaalan, N.H.; Alkharboush, A.A.; Barakat, A. Synthesis and Structure Elucidation of Novel Spirooxindole Linked to Ferrocene and Triazole Systems via [3+2] Cycloaddition Reaction. Molecules 2022, 27, 4095. [Google Scholar] [CrossRef]
- Rikagu Oxford Diffraction. CrysAlisPro. Rikagu Oxford Diffraction, Inc.: Oxfordshire, UK, 2022. [Google Scholar]
- Otwinowski, Z.; Minor, W. Processing of X-ray Diffraction Data Collected in Oscillation Mode. In Methods in Enzymology, Volume 276, Macromolecular Crystallography, Part A; Carter, C.W., Sweet, J., Eds.; Academic Press: New York, NY, USA, 1997; pp. 307–326. [Google Scholar]
- Sheldrick, G.M. SADABS—Bruker Nonius Scaling and Absorption Correction; Bruker AXS, Inc.: Madison, WI, USA, 2012. [Google Scholar]
- Sheldrick, G.M. SHELXT-Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Hübschle, C.B.; Sheldrick, G.M.; Dittrich, B. ShelXle: A Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 2011, 44, 1281–1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. Crystal Explorer17. University of Western Australia: Crawley, WA, Australia, 2017; Available online: http://hirshfeldsurface.net (accessed on 20 May 2017).
3 | 4 | |
---|---|---|
CCDC | 2203623 | 2203624 |
empirical formula | C11H9ClFN3O | C22H18Cl4F2N6O2Pd |
fw | 253.66 | 684.62 |
temp (K) | 120(2) | 170(2) |
λ(Å) | 0.71073 | 0.71073 |
cryst syst | Orthorhombic | Monoclinic |
space group | Pna21 | P21/c |
a (Å) | 12.99270(10) | 10.7712(2) |
b (Å) | 13.1421(2) | 6.8500(2) |
c (Å) | 6.73220(10) | 18.2136(6) |
β (deg) | 90 | 98.851(2) |
V (Å3) | 1149.53(3) | 1327.85(6) |
Z | 4 | 2 |
ρcalc (Mg/m3) | 1.466 | 1.712 |
μ (Mo Kα) (mm−1) | 0.332 | 1.148 |
No. reflns. | 14279 | 11866 |
Unique reflns. | 2768 | 3120 |
Completeness to θ = 25.242° | 99.9% | 98.3% |
GOOF (F2) | 1.043 | 1.086 |
Rint | 0.0258 | 0.0263 |
R1 a (I ≥ 2σ) | 0.0288 | 0.0236 |
wR2 b (I ≥ 2σ) | 0.0752 | 0.0561 |
Atoms | Distance | Atoms | Distance |
Cl(1)-C(2) | 1.719(2) | N(1)-N(2) | 1.367(2) |
F(1)-C(3) | 1.356(2) | N(1)-C(6) | 1.435(3) |
O(1)-C(10) | 1.215(3) | N(2)-N(3) | 1.301(3) |
N(1)-C(7) | 1.349(3) | N(3)-C(9) | 1.364(3) |
Atoms | Angle | Atoms | Angle |
C(7)-N(1)-N(2) | 111.55(16) | N(3)-N(2)-N(1) | 106.74(16) |
C(7)-N(1)-C(6) | 129.53(16) | N(2)-N(3)-C(9) | 109.37(18) |
N(2)-N(1)-C(6) | 118.91(16) | C(6)-C(1)-C(2) | 118.23(19) |
D-H...A | d(D-H) | d(H...A) | d(D...A) | <(DHA) | Symm. Codes |
---|---|---|---|---|---|
3 | |||||
C1-H1...N3 | 0.95 | 2.47 | 3.402(3) | 168 | 1 − x, 1 − y, 1/2 + z |
C4-H4...O1 | 0.95 | 2.28 | 3.149(3) | 151 | −1/2 + x, 1/2 − y, −1 + z |
Pd(II) complex 4 | |||||
C5-H5A...Cl1 | 0.98 | 2.79 | 3.7337(19) | 163 | x, 1/2 − y, −1/2 + z |
C7-H7...Cl1 | 0.95 | 2.77 | 3.6827(19) | 161 | x, 1/2 − y, −1/2 + z |
C10-H10...O1 | 0.95 | 2.37 | 3.294(2) | 163 | − 1 + x, y, z |
Atoms | Distance | Atoms | Distance |
Pd(1)-N(1) | 2.0010(14) | Pd(1)-Cl(1) | 2.2837(5) |
Atoms | Angle | Bond | Angle |
N(1)#1-Pd(1)-N(1) | 180 | N(1)-Pd(1)-Cl(1)#1 | 89.77(4) |
N(1)-Pd(1)-Cl(1) | 90.23(4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Rasheed, H.H.; Haukka, M.; Soliman, S.M.; Al-Majid, A.M.; Ali, M.; El-Faham, A.; Barakat, A. Synthesis and Solid-State X-ray Structure of the Mononuclear Palladium(II) Complex Based on 1,2,3-Triazole Ligand. Crystals 2022, 12, 1335. https://doi.org/10.3390/cryst12101335
Al-Rasheed HH, Haukka M, Soliman SM, Al-Majid AM, Ali M, El-Faham A, Barakat A. Synthesis and Solid-State X-ray Structure of the Mononuclear Palladium(II) Complex Based on 1,2,3-Triazole Ligand. Crystals. 2022; 12(10):1335. https://doi.org/10.3390/cryst12101335
Chicago/Turabian StyleAl-Rasheed, Hessa H., Matti Haukka, Saied M. Soliman, Abdullah Mohammed Al-Majid, M. Ali, Ayman El-Faham, and Assem Barakat. 2022. "Synthesis and Solid-State X-ray Structure of the Mononuclear Palladium(II) Complex Based on 1,2,3-Triazole Ligand" Crystals 12, no. 10: 1335. https://doi.org/10.3390/cryst12101335
APA StyleAl-Rasheed, H. H., Haukka, M., Soliman, S. M., Al-Majid, A. M., Ali, M., El-Faham, A., & Barakat, A. (2022). Synthesis and Solid-State X-ray Structure of the Mononuclear Palladium(II) Complex Based on 1,2,3-Triazole Ligand. Crystals, 12(10), 1335. https://doi.org/10.3390/cryst12101335