Enhanced Broadband Metamaterial Absorber Using Plasmonic Nanorods and Muti-Dielectric Layers Based on ZnO Substrate in the Frequency Range from 100 GHz to 1000 GHz
Abstract
:1. Introduction
2. Proposed Structure Design and Its Operation Principle
3. Results and Discussion
3.1. Effect of the Rod Material on the Absorption of the MMA
3.2. Effect of the Dielectric Substrate Material on the Absorption of the MMA
3.3. Effect of the Au, Al Array Distribution and Rod Dimensions on the Absorption of the MMA
3.4. Effect of the Incidence Angle and Light Polarization on the Absorption of the MMA
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Monti, A.; Toscano, A.; Bilotti, F. Exploiting the Surface Dispersion of Nanoparticles to Design Optical-Resistive Sheets and Salisbury Absorbers. Opt. Lett. 2016, 41, 3383–3386. [Google Scholar] [CrossRef] [PubMed]
- Medvedev, V.V.; Novikova, N.N.; Zoethout, E. Salisbury Screen with Lossy Nonconducting Materials: Way to Increase Spectral Selectivity of Absorption. Thin Solid Film. 2022, 751, 139232. [Google Scholar] [CrossRef]
- Wulan, Q.; He, D.; Zhang, T.; Peng, H.; Liu, L.; Medvedev, V.V.; Liu, Z. Salisbury Screen Absorbers Using Epsilon-near-Zero Substrate. Mater. Res. Express 2021, 8, 16406. [Google Scholar] [CrossRef]
- Fang, X.; Zhao, C.Y.; Bao, H. Design and Analysis of Salisbury Screens and Jaumann Absorbers for Solar Radiation Absorption. Front. Energy 2018, 12, 158–168. [Google Scholar] [CrossRef]
- Oh, J.; Choi, J. Adaptable Compressed Jaumann Absorber for Harsh and Dynamic Electromagnetic Environments; Syracuse Univ Ny Syracuse: Syracuse, NY, USA, 2020. [Google Scholar]
- Ma, Z.; Jiang, C.; Cao, W.; Li, J.; Huang, X. An Ultrawideband and High-Absorption Circuit-Analog Absorber with Incident Angle-Insensitive Performance. IEEE Trans. Antennas Propag. 2022. [Google Scholar] [CrossRef]
- Yao, Z.; Xiao, S.; Li, Y.; Wang, B. Wide-Angle, Ultra-Wideband, Polarization-Independent Circuit Analog Absorbers. IEEE Trans. Antennas Propag. 2022, 70, 7276–7281. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect Metamaterial Absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef]
- Bagmanci, M.; Karaaslan, M.; Unal, E.; Akgol, O.; Bakır, M.; Sabah, C. Solar Energy Harvesting with Ultra-Broadband Metamaterial Absorber. Int. J. Mod. Phys. B 2019, 33, 1950056. [Google Scholar] [CrossRef]
- Shuvo, M.M.K.; Hossain, M.I.; Mahmud, S.; Rahman, S.; Topu, M.T.H.; Hoque, A.; Islam, S.S.; Soliman, M.S.; Almalki, S.H.A.; Islam, M. Polarization and Angular Insensitive Bendable Metamaterial Absorber for UV to NIR Range. Sci. Rep. 2022, 12, 1–15. [Google Scholar] [CrossRef]
- Wu, J.; Sun, Y.; Wu, B.; Sun, C.; Wu, X. Perfect Metamaterial Absorber for Solar Energy Utilization. Int. J. Therm. Sci. 2022, 179, 107638. [Google Scholar] [CrossRef]
- Hossain, M.J.; Faruque, M.R.I.; Islam, M.T. Perfect Metamaterial Absorber with High Fractional Bandwidth for Solar Energy Harvesting. PLoS ONE 2018, 13, e0207314. [Google Scholar] [CrossRef] [PubMed]
- Abdulkarim, Y.I.; Deng, L.; Altıntaş, O.; Ünal, E.; Karaaslan, M. Metamaterial Absorber Sensor Design by Incorporating Swastika Shaped Resonator to Determination of the Liquid Chemicals Depending on Electrical Characteristics. Phys. E Low-Dimens. Syst. Nanostruct. 2019, 114, 113593. [Google Scholar] [CrossRef]
- Gao, Z.; Fan, Q.; Tian, X.; Xu, C.; Meng, Z.; Huang, S.; Xiao, T.; Tian, C. An Optically Transparent Broadband Metamaterial Absorber for Radar-Infrared Bi-Stealth. Opt. Mater. 2021, 112, 110793. [Google Scholar] [CrossRef]
- Chen, X.; Tian, C.; Che, Z.; Chen, T. Selective Metamaterial Perfect Absorber for Infrared and 1.54 Μm Laser Compatible Stealth Technology. Optik 2018, 172, 840–846. [Google Scholar] [CrossRef]
- Naveed, M.A.; Bilal, R.M.H.; Baqir, M.A.; Bashir, M.M.; Ali, M.M.; Rahim, A.A. Ultrawideband Fractal Metamaterial Absorber Made of Nickel Operating in the UV to IR Spectrum. Opt. Express 2021, 29, 42911–42923. [Google Scholar] [CrossRef]
- Telha, S.; Nouho, A.A.; Ibrahim, I.A.; Achaoui, Y.; Bouaaddi, A.; Jakjoud, H.; Baida, F.I. Annular Hole Array Design as a High Efficiency Absorber for Photovoltaic Applications. Optik 2022, 268, 169735. [Google Scholar] [CrossRef]
- Cheng, Y.; Zou, Y.; Luo, H.; Chen, F.; Mao, X. Compact Ultra-Thin Seven-Band Microwave Metamaterial Absorber Based on a Single Resonator Structure. J. Electron. Mater. 2019, 48, 3939–3946. [Google Scholar] [CrossRef]
- Zhou, Q.; Yin, X.; Ye, F.; Mo, R.; Tang, Z.; Fan, X.; Cheng, L.; Zhang, L. Optically Transparent and Flexible Broadband Microwave Metamaterial Absorber with Sandwich Structure. Appl. Phys. A 2019, 125, 1–8. [Google Scholar] [CrossRef]
- Lai, S.; Wu, Y.; Zhu, X.; Gu, W.; Wu, W. An Optically Transparent Ultrabroadband Microwave Absorber. IEEE Photonics J. 2017, 9, 1–10. [Google Scholar] [CrossRef]
- Ning, J.; Chen, K.; Zhao, W.; Zhao, J.; Jiang, T.; Feng, Y. An Ultrathin Tunable Metamaterial Absorber for Lower Microwave Band Based on Magnetic Nanomaterial. Nanomaterials 2022, 12, 2135. [Google Scholar] [CrossRef]
- Hossain, M.B.; Faruque, M.R.I.; Islam, M.T.; Singh, M.; Jusoh, M. Triple Band Microwave Metamaterial Absorber Based on Double E-Shaped Symmetric Split Ring Resonators for EMI Shielding and Stealth Applications. J. Mater. Res. Technol. 2022, 18, 1653–1668. [Google Scholar] [CrossRef]
- Guo, W.; Liu, Y.; Han, T. Ultra-Broadband Infrared Metasurface Absorber. Opt. Express 2016, 24, 20586–20592. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Gao, P.; Liu, H.; Gao, L. A Polarization-Insensitive Dual-Band Plasmonic Metamaterial Absorber for a Sensor Application. Phys. Scr. 2021, 96, 65804. [Google Scholar] [CrossRef]
- Katrodiya, D.; Jani, C.; Sorathiya, V.; Patel, S.K. Metasurface Based Broadband Solar Absorber. Opt. Mater. 2019, 89, 34–41. [Google Scholar] [CrossRef]
- Xu, W.Z.; Ye, Z.Z.; Zeng, Y.J.; Zhu, L.P.; Zhao, B.H.; Jiang, L.; Lu, J.G.; He, H.P.; Zhang, S.B. ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition. Appl. Phys. Lett. 2006, 88, 173506. [Google Scholar] [CrossRef]
- Chu, S.; Olmedo, M.; Yang, Z.; Kong, J.; Liu, J. Electrically pumped ultraviolet ZnO diode lasers on Si. Appl. Phys. Lett. 2008, 93, 181106. [Google Scholar] [CrossRef]
- Robertson, J. High dielectric constant oxides. Eur. Phys. J.-Appl. Phys. 2004, 28, 265–291. [Google Scholar] [CrossRef]
- Dette, C.; Pérez-Osorio, M.A.; Kley, C.S.; Punke, P.; Patrick, C.E.; Jacobson, P.; Giustino, F.; Jung, S.J.; Kern, K. TiO2 anatase with a bandgap in the visible region. Nano Lett. 2014, 14, 6533–6538. [Google Scholar] [CrossRef]
- Li, Z.; Rusli, E.; Foldyna, M.; Wang, J.; Chen, W.; Prakoso, A.B.; Lu, C.; i Cabarrocas, P.R. Nanostructured Back Reflectors Produced Using Polystyrene Assisted Lithography for Enhanced Light Trapping in Silicon Thin Film Solar Cells. Sol. Energy 2018, 167, 108–115. [Google Scholar] [CrossRef]
- Hsu, C.; Burkhard, G.F.; McGehee, M.D.; Cui, Y. Effects of Nanostructured Back Reflectors on the External Quantum Efficiency in Thin Film Solar Cells. Nano Res. 2011, 4, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Yuan, L.H.; Zhou, B.; Shen, X.P.; Cheng, Q.; Cui, T.J. Ultrathin Multiband Gigahertz Metamaterial Absorbers. J. Appl. Phys. 2011, 110, 14909. [Google Scholar] [CrossRef]
- Ogawa, S.; Kimata, M. Metal-Insulator-Metal-Based Plasmonic Metamaterial Absorbers at Visible and Infrared Wavelengths: A Review. Materials 2018, 11, 458. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Song, Z. Switchable Terahertz Metamaterial Absorber with Broadband Absorption and Multiband Absorption. Opt. Express 2021, 29, 21551–21561. [Google Scholar] [CrossRef] [PubMed]
- ElZein, B.; Elrashidi, A.; Dogheche, E.; Jabbour, G. Analyzing the Mechanism of Zinc Oxide Nanowires Bending and Bundling Induced by Electron Beam under Scanning Electron Microscope Using Numerical and Simulation Analysis. Materials 2022, 15, 5358. [Google Scholar] [CrossRef] [PubMed]
- DeVore, J.R. Refractive Indices of Rutile and Sphalerite. JOSA 1951, 41, 416–419. [Google Scholar] [CrossRef]
- Aspnes, D.E.; Studna, A.A. Dielectric Functions and Optical Parameters of Si, Ge, Gap, Gaas, Gasb, Inp, Inas, and Insb from 1.5 to 6.0 Ev. Phys. Rev. B 1983, 27, 985. [Google Scholar] [CrossRef]
- Kaur, D.; Bharti, A.; Sharma, T.; Mahu, C. Dielectric Properties of ZnO-Based Nanocomposites and Their Potential Applications. Int. J. Opt. 2021, 2021, 995020. [Google Scholar] [CrossRef]
- Elrashidi, A. Light Harvesting in Silicon Nanowires Solar Cells by Using Graphene Layer and Plasmonic Nanoparticles. Appl. Sci. 2022, 12, 2519. [Google Scholar] [CrossRef]
- O’Hara, J.F.; Smirnova, E.; Azad, A.K.; Chen, H.-T.; Taylor, A.J. Effects of Microstructure Variations on Macroscopic Terahertz Metafilm Properties. Act. Passiv. Electron. Compon. 2007, 2007, 049691. [Google Scholar] [CrossRef]
- Li, W.; Wu, T.; Wang, W.; Guan, J.; Zhai, P. Integrating Non-Planar Metamaterials with Magnetic Absorbing Materials to Yield Ultra-Broadband Microwave Hybrid Absorbers. Appl. Phys. Lett. 2014, 104, 22903. [Google Scholar] [CrossRef] [Green Version]
- Elrashidi, A. Highly Sensitive Silicon Nitride Biomedical Sensor Using Plasmonic Grating and ZnO Layer. Mater. Res. Express 2020, 7, 75001. [Google Scholar] [CrossRef]
- Zhou, Y.; Qin, Z.; Liang, Z.; Meng, D.; Xu, H.; Smith, D.R.; Liu, Y. Ultra-Broadband Metamaterial Absorbers from Long to Very Long Infrared Regime. Light Sci. Appl. 2021, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Li, Y.C.; Hao, T.; Li, L.; Liang, C.-H. A Design of Ultra-Broadband Metamaterial Absorber. Waves Random Complex Media 2017, 27, 381–391. [Google Scholar] [CrossRef]
- Zhang, C.; Yin, S.; Long, C.; Dong, B.W.; He, D.; Cheng, Q. Hybrid Metamaterial Absorber for Ultra-Low and Dual-Broadband Absorption. Opt. Express 2021, 29, 14078–14086. [Google Scholar] [CrossRef]
- Liu, W.; Tian, J.; Yang, R.; Pei, W. Design of a Type of Broadband Metamaterial Absorber Based on Metal and Graphene. Curr. Appl. Phys. 2021, 31, 122–131. [Google Scholar] [CrossRef]
- Cheng, Y.; Luo, H.; Chen, F. Broadband Metamaterial Microwave Absorber Based on Asymmetric Sectional Resonator Structures. J. Appl. Phys. 2020, 127, 214902. [Google Scholar] [CrossRef]
- Thi Quynh Hoa, N.; Huu Lam, P.; Duy Tung, P. Wide-angle and Polarization-independent Broadband Microwave Metamaterial Absorber. Microw. Opt. Technol. Lett. 2017, 59, 1157–1161. [Google Scholar] [CrossRef]
Material | Term | Strength | Plasma Frequency | Resonant Frequency | Damping Frequency |
---|---|---|---|---|---|
Au | 0 | 0.7600 | 0.137188 × 1017 | 0.000000 × 100 | 0.805202 × 1014 |
1 | 0.0240 | 0.137188 × 1017 | 0.630488 × 1015 | 0.366139 × 1015 | |
2 | 0.0100 | 0.137188 × 1017 | 0.126098 × 1016 | 0.524141 × 1015 | |
3 | 0.0710 | 0.137188 × 1017 | 0.451065 × 1016 | 0.132175 × 1016 | |
4 | 0.6010 | 0.137188 × 1017 | 0.653885 × 1016 | 0.378901 × 1016 | |
5 | 4.3840 | 0.137188 × 1017 | 0.202364 × 1017 | 0.336362 × 1016 | |
Al | 0 | 0.5230 | 0.227583 × 1017 | 0.000000 × 100 | 0.714047 × 1014 |
1 | 0.2270 | 0.227583 × 1017 | 0.246118 × 1015 | 0.505910 × 1015 | |
2 | 0.0500 | 0.227583 × 1017 | 0.234572 × 1016 | 0.474006 × 1015 | |
3 | 0.1660 | 0.227583 × 1017 | 0.274680 × 1016 | 0.205251 × 1016 | |
4 | 0.0300 | 0.227583 × 1017 | 0.527635 × 1016 | 0.513810 × 1016 |
Dielectric Substrate Material | Minimum Absorption | Maximum Absorption | Average Absorption | |
---|---|---|---|---|
Single dielectric layer | SiO2 | 37.6% | 90.8% | 73.6% |
Al2O3 | 39.4% | 91.4% | 71.0% | |
TiO2 | 43.7% | 96.1% | 70.0% | |
Multi-dielectric layers on top of each other (The first one is the upper layer) | TiO2-SiO2 | 33.2% | 99.0% | 69.8% |
TiO2-Al2O3 | 33.7% | 97.7% | 71.0% | |
SiO2-TiO2 | 36.3% | 93.5% | 72.4% | |
SiO2-Al2O3 | 37.3% | 97.7% | 72.7% | |
Al2O3-TiO2 | 35.6% | 94.7% | 72.7% | |
Al2O3-SiO2 | 38.5% | 96.4% | 67.4% | |
Side-by-side multi-dielectric layers | TiO2-SiO2 | 54.8% | 92.7% | 71.6% |
Al2O3-SiO2 | 41.5% | 92.7% | 71.5% | |
TiO2-Al2O3 | 52.6% | 93.3% | 73.4% |
ZnO Layer Thickness | Minimum Absorption | Maximum Absorption | Average Absorption |
---|---|---|---|
Without ZnO layer | 59.3% | 94.0% | 77.0% |
h3 = 40 nm | 60.0% | 95.7% | 83.3% |
h3 = 50 nm | 55.5% | 94.9% | 83.5% |
h3 = 60 nm | 65.9% | 100% | 84.0% |
h3 = 70 nm | 62.4% | 95.1% | 82.1% |
θ = 0° | Minimum Absorption | Maximum Absorption | Average Absorption |
---|---|---|---|
Direct | 65.9% | 100% | 84% |
10° | 61.8% | 99.1% | 86.9% |
20° | 70.3% | 98.8% | 89.9% |
30° | 72.1% | 98.6% | 92.1% |
40° | 77.5% | 98.8% | 93.3% |
50° | 78.4% | 99.1% | 93.3% |
60° | 63.4% | 99.1% | 91.5% |
70° | 45% | 98.8% | 84.5% |
Related Work | Operating Frequency Range | Maximum Absorption | Technique |
---|---|---|---|
Ref. [43] | 25–37.5 THz | 87% | Ti/Ge/Si3N4/Ti metamaterial structure |
Ref. [44] | 6–16 GHZ | Exceeds 80% | Metallic strips fabricated with lumped resistors on a FR-4 substrate |
Ref. [45] | 0.79–20.9 GHz and 25.1–40 GHz | 90% | Magnetic absorbing material and a multi-layered meta-structure |
Ref. [46] | 4.2–7.4 THz | 98.21% | Split gold and graphene rings over a dielectric and gold plate. |
Ref. [47] | 7.22–8.84 GHz | 90% | Asymmetric section resonator structure with different sizes. |
Ref. [48] | 10–17 GHz | 90% | Array of alternating copper, and FR-4 disks to form a conical frustum |
Proposed structure | 100–1000 GHz | 100% | Au nanorods/TiO2-SiO2/Au ground plate metamaterial structure |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emara, A.; Yousef, A.; ElZein, B.; Jabbour, G.; Elrashidi, A. Enhanced Broadband Metamaterial Absorber Using Plasmonic Nanorods and Muti-Dielectric Layers Based on ZnO Substrate in the Frequency Range from 100 GHz to 1000 GHz. Crystals 2022, 12, 1334. https://doi.org/10.3390/cryst12101334
Emara A, Yousef A, ElZein B, Jabbour G, Elrashidi A. Enhanced Broadband Metamaterial Absorber Using Plasmonic Nanorods and Muti-Dielectric Layers Based on ZnO Substrate in the Frequency Range from 100 GHz to 1000 GHz. Crystals. 2022; 12(10):1334. https://doi.org/10.3390/cryst12101334
Chicago/Turabian StyleEmara, Ahmed, Amr Yousef, Basma ElZein, Ghassan Jabbour, and Ali Elrashidi. 2022. "Enhanced Broadband Metamaterial Absorber Using Plasmonic Nanorods and Muti-Dielectric Layers Based on ZnO Substrate in the Frequency Range from 100 GHz to 1000 GHz" Crystals 12, no. 10: 1334. https://doi.org/10.3390/cryst12101334
APA StyleEmara, A., Yousef, A., ElZein, B., Jabbour, G., & Elrashidi, A. (2022). Enhanced Broadband Metamaterial Absorber Using Plasmonic Nanorods and Muti-Dielectric Layers Based on ZnO Substrate in the Frequency Range from 100 GHz to 1000 GHz. Crystals, 12(10), 1334. https://doi.org/10.3390/cryst12101334