Dual Optical Frequency Comb Generation with Dual Cascaded Difference Frequency Generation
Abstract
:1. Introduction
2. Theoretical Model
3. Calculations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Delfyett, P.J.; Gee, S.; Choi, M.-T.; Izadpanah, H.; Lee, W.; Ozharar, S.; Quinlan, F.; Yilmaz, T. Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications. J. Lightwave Technol. 2006, 24, 2701–2719. [Google Scholar] [CrossRef]
- Pupeza, I.; Zhang, C.K.; Högner, M.; Ye, J. Extreme-ultraviolet frequency combs for precision metrology and attosecond science. Nat. Photonics 2021, 15, 175–186. [Google Scholar] [CrossRef]
- Bosworth, B.T.; Jungwirth, N.R.; Smith, K.; Cheron, J.; Quinlan, F.; Woodson, M.; Morgan, J.; Beling, A.; Williams, D.; Orloff, N.D.; et al. Electro-optically derived millimeter-wave sources with phase and amplitude control. Appl. Phys. Lett. 2021, 119, 151106. [Google Scholar] [CrossRef]
- Chen, B.; Fan, Y.Y.; Liu, T.; Gao, Y.S.; Xue, X.Q.; Liu, Y. Broadband photonic RF channelizer with 66 channels based on acousto-optic frequency shifter. Opt. Eng. 2021, 60, 126102. [Google Scholar] [CrossRef]
- Chandran, S.; Ruth, A.A.; Martin, E.P.; Alexander, J.K.; Peters, F.H.; Anandarajah, P.M. Off-Axis Cavity-Enhanced Absorption Spectroscopy of 14NH3 in Air Using a Gain-Switched Frequency Comb at 1.514 µm. Sensors 2019, 19, 5217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coddington, I.; Newbury, N.; Swann, W. Dual-comb spectroscopy. Optica 2016, 3, 414–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz, F.C.; Maser, D.L.; Johnson, T.; Ycas, G.; Klose, A.; Giorgetta, F.R.; Coddington, I.; Diddams, S.A. Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy. Opt. Express 2015, 23, 26814–26824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.F.; Granzow, N.; Schmidt, M.A.; Chang, W.; Wang, L.; Coulombier, Q.; Troles, J.; Leindecker, N.; Vodopyanov, K.L.; Schunemann, P.G.; et al. Midinfrared frequency combs from coherent supercontinuum in chalcogenide and optical parametric oscillation. Opt. Lett. 2014, 39, 2056–2059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hugi, A.; Villares, G.; Blaser, S.; Liu, H.C.; Faist, J. Mid-infrared frequency comb based on a quantum cascade laser. Nature 2012, 492, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Ravi, K.; Schimpf, D.N.; Kärtner, F.X. Pulse sequences for efficient multi-cycle terahertz generation in periodically poled lithium niobate. Opt. Express 2016, 24, 25582–25607. [Google Scholar] [CrossRef] [PubMed]
- Kiessling, J.; Sowade, R.; Breunig, I.; Dierolf, V. Cascaded optical parametric oscillations generating tunable terahertz waves in periodically poled lithium niobate crystals. Opt. Express 2009, 17, 87–91. [Google Scholar] [CrossRef]
- Li, Z.Y.; Yan, Q.Z.; Liu, P.X.; Jiao, B.Z.; Zhang, G.G.; Chen, Z.L.; Bing, P.B.; Yuan, S.; Zhng, K.; Yao, J.Q. Terahertz wave generation by repeated and continuous frequency conversions from pump wave to high-order Stokes waves. Chin. Phys. B 2022, 31, 0742909. [Google Scholar]
- Liu, P.X.; Qi, F.; Pang, Z.B.; Li, W.F.; Wang, Y.L.; Liu, Z.Y.; Meng, D.L. Cascaded difference frequency generation in organic crystal 4′-dimethylamino-N-methyl-4-stilbazolium tosylate. Opt. Lett. 2019, 44, 4965–4968. [Google Scholar] [CrossRef]
- Mayer, A.; Keilmann, F. Far-infrared nonlinear optics. I. χ(2) near ionic resonance. Phys. Rev. B 1986, 33, 6954–6961. [Google Scholar] [CrossRef]
- Jundt, D.H. Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate. Opt. Lett. 1997, 22, 1553–1555. [Google Scholar] [CrossRef] [Green Version]
- Pálfalvi, L.; Hebling, J.; Kuhl, J.; Ṕter, Á.; Polgár, K. Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range. J. Appl. Phys. 2005, 97, 123505. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Y.; Wang, K.; Zhang, G.; Li, Z.; Bing, P.; Yuan, S.; Zhu, A.; Xu, D.; Yao, J. Dual Optical Frequency Comb Generation with Dual Cascaded Difference Frequency Generation. Crystals 2022, 12, 1392. https://doi.org/10.3390/cryst12101392
Yin Y, Wang K, Zhang G, Li Z, Bing P, Yuan S, Zhu A, Xu D, Yao J. Dual Optical Frequency Comb Generation with Dual Cascaded Difference Frequency Generation. Crystals. 2022; 12(10):1392. https://doi.org/10.3390/cryst12101392
Chicago/Turabian StyleYin, Yanli, Kaiwu Wang, Gege Zhang, Zhongyang Li, Pibin Bing, Sheng Yuan, Anfu Zhu, Degang Xu, and Jianquan Yao. 2022. "Dual Optical Frequency Comb Generation with Dual Cascaded Difference Frequency Generation" Crystals 12, no. 10: 1392. https://doi.org/10.3390/cryst12101392
APA StyleYin, Y., Wang, K., Zhang, G., Li, Z., Bing, P., Yuan, S., Zhu, A., Xu, D., & Yao, J. (2022). Dual Optical Frequency Comb Generation with Dual Cascaded Difference Frequency Generation. Crystals, 12(10), 1392. https://doi.org/10.3390/cryst12101392