Phase-Matching in Nonlinear Crystal-Based Monochromatic Terahertz-Wave Generation
Abstract
:1. Introduction
2. Basic Problem of Phase-Matching in THz-Wave Generation
3. Scalar (Collinear) Phase-Matching
- Birefringent Phase-Matching
- Cross-Reststrahlen Band Phase-Matching
- Quasi-Phase-Matching (QPM)
4. Vector Phase-Matching
4.1. Macroscopic Noncollinear Phase-Matching
4.2. Microscopic Vector Phase-Matching
- Cherenkov-Type Phase-Matching
- Surface-Emitted QPM with 2D Poling Period
- Modal Phase-Matching in a Waveguide
- Other Phase-Matching Configurations
5. Summary and Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, P.H. Terahertz Technology. IEEE Trans. Microw. Theory Tech. 2002, 50, 910–928. [Google Scholar] [CrossRef]
- Haddad, J.E.; Bousquet, B.; Canioni, L.; Mounaix, P. Review in terahertz spectral analysis. Trends Anal. Chem. 2013, 44, 98–105. [Google Scholar] [CrossRef]
- Cehrz, R.D.; Becklin, E.E.; De Buizer, J.; Herter, T.; Keller, L.D.; Krabbe, A.; Marcum, P.M.; Roellig, T.L.; Sandell, G.H.L.; Temi, P. Status of the Stratospheric Observatory for Infrared Astronomy (SOFIA). Adv. Space Res. 2011, 21, 2551–2560. [Google Scholar]
- Duling, I.; Zimdars, D. Terahertz imaging: Revealing hidden defects. Nat. Photonics 2009, 3, 630–632. [Google Scholar] [CrossRef]
- Arbab, M.H.; Winebrenner, D.P.; Dickey, T.C.; Chen, A.; Klein, M.B.; Mourad, P.D. Terahertz spectroscopy for the assessment of burn injuries in vivo. J. Biomed. Opt. 2013, 18, 077004-1–077004-8. [Google Scholar] [CrossRef]
- The Truth about Terahertz. Avaliable online: https://spectrum.ieee.org/aerospace/military/the-truth-about-terahertz (accessed on 17 August 2012).
- Sun, H.Q.; Ding, Y.J.; Zotova, I.B. THz Spectroscopy by Frequency-Tuning Monochromatic THz Source: From Single Species to Gas Mixtures. IEEE Sens. J. 2010, 10, 621–629. [Google Scholar] [CrossRef]
- Sasaki, T.; Sakamoto, T.; Otsuka, M. Sharp Absorption Peaks in THz Spectra Valuable for Crystal Quality Evaluation of Middle Molecular Weight Pharmaceuticals. J. Infrared Millim. Terahertz Waves 2018, 39, 828–839. [Google Scholar] [CrossRef]
- Murate, K.; Kawase, K. Perspective: Terahretz wave parametric generator and its applications. J. Appl. Phys. 2018, 124, 160901. [Google Scholar] [CrossRef]
- Ikari, T.; Zhang, X.B.; Minamide, H.; Ito, H. THz-wave parametric oscillator with a surface-emitted configuration. Opt. Express 2006, 14, 1604–1610. [Google Scholar] [CrossRef]
- Petersen, E.B.; Shi, W.; Chavez-Pirson, A.; Peyghambarian, N.; Cooney, A.T. Efficient parametric terahertz generation in quasi-phase-matched GaP through cavity enhanced difference-frequency generation. Appl. Phys. Lett. 2011, 98, 121119. [Google Scholar] [CrossRef]
- Thompson, D.E.; Coleman, P.D. Step-Tunable Far Infrared Radiation by Phase Matched Mixing in Planar-Dielectric Waveguides. IEEE Trans. Microw. Theory Tech. 1974, 22, 995–1000. [Google Scholar] [CrossRef]
- Suizu, K.; Shibuya, T.; Akiba, T.; Tutui, T.; Otani, C.; Kawase, K. Čherenkov phase-matched monochromatic THz-wave generation using difference frequency generation with a lithium niobate crystal. Opt. Express 2008, 16, 7493–7498. [Google Scholar] [CrossRef]
- Bakunov, M.I.; Tsarev, M.V.; Mashkovich, E.A. Terahertz difference-frequency generation by tilted amplitude front excitation. Opt. Express 2012, 20, 28573–28585. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Ding, Y.J.; Fernelius, N.; Vodopyanov, K. Efficient, tunable, and coherent 0.18–5.27-THz source based on GaSe crystal. Opt. Lett. 2002, 27, 1454–1456. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.J.; Shi, W. From backward THz difference-frequency generation to parametric oscillation. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 352–359. [Google Scholar] [CrossRef]
- Shikata, J.I.; Kawase, K.; Karino, K.I.; Taniuchi, T.; Ito, H. Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals. IEEE Trans. Microw. Theory Tech. 2000, 48, 653–661. [Google Scholar] [CrossRef]
- Liu, P.X.; Xu, D.G.; Jiang, H.; Zhang, Z.; Zhong, K.; Wang, Y.Y.; Yao, J.Q. Theory of monochromatic terahertz generation via Cherenkov phase-matched difference frequency generation in LiNbO3 crystal. J. Opt. Soc. Am. B 2012, 29, 2425–2430. [Google Scholar] [CrossRef]
- Liu, P.X.; Shi, W.; Xu, D.G.; Zhang, X.Z.; Zhang, G.Z.; Yao, J.Q. Efficient phase-matching for difference frequency generation with pump of Bessel laser beams. Opt. Express 2016, 27, 628–630. [Google Scholar] [CrossRef]
- Kitaeva, G.K. Terahertz generation by means of optical lasers. Laser Phys. Lett. 2008, 5, 559–576. [Google Scholar] [CrossRef]
- Boyd, R.W. Nonlinear Optics, 3rd ed.; Academic Press: New York, NY, USA, 2008; pp. 77–79. [Google Scholar]
- Powers, P.E.; Haus, J.W. Fundamentals of Nonlinear Optics, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2019; pp. 124–125. [Google Scholar]
- Taniuchi, T.; Nakanishi, H. Collinear phase-matched terahertz-wave generation in GaP crystal using a dual-wavelength optical parametric oscillator. J. Appl. Phys. 2004, 95, 7588–7591. [Google Scholar] [CrossRef]
- Taniuchi, T.; Okada, S.; Nakanishi, H. Widely tunable terahertz-wave generation in an organic crystal and its spectroscopic application. J. Appl. Phys. 2004, 95, 5984–5988. [Google Scholar] [CrossRef]
- Bakunov, M.I.; Bodrov, S.B.; Maslov, A.V.; Hangyo, M. Theory of terahertz generation in a slab of electro-optic material using an ultrashort laser pulse focused to a line. Phys. Rev. B 2007, 76, 085346. [Google Scholar] [CrossRef]
- Wang, T.D.; Lin, S.T.; Lin, Y.Y.; Chiang, A.C.; Huang, Y.C. Forward and backward terahertz-wave difference-frequency generations from periodically poled lithium niobate. Opt. Express 2008, 16, 6471–6478. [Google Scholar] [CrossRef] [PubMed]
- Sowade, R.; Breunig, I.; Mayorga, I.C.; Kiessling, J.; Tulea, C.; Dierolf, V.; Buse, K. Continuous-wave optical parametric terahertz source. Opt. Express 2009, 17, 22303–22310. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Ding, Y.J. A monochromatic and high-power terahertz source tunable in the ranges of 2.7–38.4 and 58.2–3540 μm for variety of potential applications. Appl. Phys. Lett. 2004, 84, 1635–1637. [Google Scholar] [CrossRef]
- Tanabe, T.; Suto, K.; Nishizawa, J.; Sasaki, T. Characteristics of terahertz-wave generation from GaSe crystals. J. Phys. D Appl. Phys. 2004, 37, 155–158. [Google Scholar] [CrossRef]
- Shi, W.; Ding, Y.J. Tunable coherent radiation from terahertz to microwave by mixing two infrared frequencies in a 47-mm-long GaSe crystal. Int. J. High Speed Electron. Syst. 2006, 16, 589–595. [Google Scholar] [CrossRef]
- Leigh, M.A.; Shi, W.; Zhong, J.; Yao, Z.D.; Jiang, S.B.; Peyghambarian, N. Narrowband Pulsed THz Source Using Eyesafe Region Fiber Lasers and a Nonlinear Crystal. IEEE Photonics Technol. Lett. 2009, 21, 27–29. [Google Scholar] [CrossRef]
- Zhao, P.; Ragam, S.; Ding, Y.J.; Zotova, I.B. Compact and portable terahertz source by mixing two frequencies generated simultaneously by a single solid-state laser. Opt. Lett. 2010, 35, 3979–3981. [Google Scholar] [CrossRef]
- Huang, N.; Liu, H.J.; Sun, Q.B.; Wang, Z.L.; Li, S.P.; Han, J. Tunable terahertz generation via a cascaded optical parametric device. Laser Phys. Lett. 2016, 13, 055802. [Google Scholar] [CrossRef]
- Yan, D.X.; Wang, Y.Y.; Xu, D.G.; Liu, P.; Yan, C.; Shi, J.; Liu, H.; He, Y.; Tang, L.; Feng, J.; et al. High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator. Photonics Res. 2017, 5, 82–87. [Google Scholar] [CrossRef] [Green Version]
- Boyd, G.D.; Bridges, T.J.; Patel, C.K.N.; Buehler, E. Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2. Appl. Phys. Lett. 1972, 21, 553. [Google Scholar] [CrossRef]
- Shi, W.; Ding, Y.J.; Schunemann, P.G. Coherent terahertz waves based on difference-frequency generation in an annealed zinc–germanium phosphide crystal: Improvements on tuning ranges and peak powers. Opt. Commun. 2004, 233, 183–189. [Google Scholar] [CrossRef]
- Creeden, D.; Mccarthy, J.C.; Ketteridge, P.A.; Schunemann, P.G.; Southward, T.; Komiak, J.J.; Chicklis, E.P. Compact, high average power, fiber-pumped terahertz source for active real-time imaging of concealed objects. Opt. Express 2007, 15, 6478–6483. [Google Scholar] [CrossRef]
- Petersen, E.B.; Shi, W.; Nguyen, D.T.; Yao, Z.D.; Zong, J.; Chavez-Pirson, A.; Peyghambarian, N. Enhanced terahertz source based on external cavity difference-frequency generation using monolithic single-frequency pulsed fiber lasers. Opt. Lett. 2010, 35, 2170–2172. [Google Scholar] [CrossRef] [PubMed]
- Monoszlai, B.; Vicario, C.; Jazbinsek, M.; Hauri, C.P. High-energy terahertz pulses from organic crystals: DAST and DSTMS pumped at Ti:sapphire wavelength. Opt. Lett. 2013, 38, 5106–5109. [Google Scholar] [CrossRef]
- Akiba, T.; Seki, Y.; Odagiri, M.; Hashino, I.; Suizu, K.; Avetisyan, Y.H.; Miyamoto, K.; Omatsu, T. Terahertz wave generation using type II phase matching polarization combination via difference frequency generation with LiNbO3. Jpn. J. Appl. Phys. 2015, 54, 062202. [Google Scholar] [CrossRef]
- Mashkovich, E.A.; Sychugin, S.A.; Bakunov, M.I. Generation of narrowband terahertz radiation by an ultrashort laser pulse in a bulk LiNbO3 crystal. J. Opt. Soc. Am. B 2017, 34, 1805–1810. [Google Scholar] [CrossRef]
- Zernike, F. Temperature-Dependent Phase Matching for Far-Infrared Difference-Frequency Generation in InSb. Phys. Rev. Lett. 1969, 22, 931–933. [Google Scholar] [CrossRef]
- Pálfalvi, L.; Hebling, J.; Kuhl, J.; Péter, Á.; Polgár, K. Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range. J. Appl. Phys. 2005, 97, 123505. [Google Scholar] [CrossRef]
- Saito, K.; Nagai, Y.; Yamamoto, K.; Maeda, K.; Tanabe, T.; Oyama, Y. Terahertz Wave Generation via Nonlinear Parametric Process from ε-GaSe Single Crystals Grown by Liquid Phase Solution Method. Opt. Photonics J. 2014, 4, 213–218. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.G.; Huang, Z.M.; Tong, J.C.; Cheng, O.Y.; Chu, J.H. Intensive terahertz emission from GaSe0.91S0.09 under collinear difference frequency generation. Appl. Phys. Lett. 2013, 103, 081104. [Google Scholar] [CrossRef]
- Herman, G. Terahertz generation in high purity semiconductor via 3 wave DFG and Cross-Reststrahlen band PM. In Proceedings of the 1999 IEEE LEOS Annual Meeting Conference Proceedings, LEOS’99, 12th Annual Meeting, San Francisco, CA, USA, 8–11 November 1999. [Google Scholar]
- Shi, W.; Ding, Y.J. Tunable terahertz waves generated by mixing two copropagating infrared beams in GaP. Opt. Lett. 2005, 30, 1030–1032. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Ding, Y.J.; Zotova, L.B. Power scaling of widely-tunable monochromatic terahertz radiation by stacking high-resistivity GaP plates. Appl. Phys. Lett. 2010, 96, 031101. [Google Scholar] [CrossRef]
- Huang, J.G.; Lu, J.X.; Zhou, W.; Tong, J.C.; Huang, Z.M.; Chu, J.H. Investigation of high power terahertz emission in gap crystal based on collinear difference frequency generation. Acta Phys. Sin. 2013, 62, 120704. (In Chinese) [Google Scholar] [CrossRef]
- Orlov, S.N.; Polivanov, Y.N. Spectral distribution of the efficiency of terahertz difference frequency generation upon collinear propagation of interacting waves in semiconductor crystals. Quantum Electron. 2007, 37, 36–42. [Google Scholar] [CrossRef]
- Boulanger, B.; Bernerd, C.; Segonds, P.; Debray, J.; Roux, J.F.; Hérault, E.; Coutaz, J.L.; Shoji, I.; Minamide, H.; Ito, H.; et al. Evaluation of eight nonlinear crystals for phase-matched TeraHertz second-order difference-frequency generation at room temperature. Opt. Mater. Express 2020, 10, 561–576. [Google Scholar]
- Jazbinsek, M.; Puc, U.; Abina, A.; Zidansek, A. Organic Crystals for THz Photonics. Appl. Sci. 2019, 9, 882. [Google Scholar] [CrossRef]
- Liu, P.X.; Xu, D.; Li, Y.; Zhang, Y.X.; Wang, Y.Y.; Yao, J.Q.; Wu, Y.C. Widely tunable and monochromatic terahertz difference frequency generation with organic crystal DSTMS. Europhys. Lett. 2014, 106, 60001. [Google Scholar] [CrossRef]
- Uchida, H.; Tripathi, S.R.; Suizu, K.; Shibuya, T.; Osumi, T.; Kawase, K. Widely tunable broadband terahertz radiation generation using a configurationally locked polyene 2-[3-(4-hydroxystyryl)-5,5-dimethylcyclohex-2-enylidene] malononitrile crystal via difference frequency generation. Appl. Phys. B Lasers Opt. 2013, 111, 489–493. [Google Scholar] [CrossRef]
- Miyamoto, K.; Ohno, S.; Fujiwara, M.; Minamide, H.; Hashimoto, H.; Ito, H. Optimized terahertz-wave generation using BNA-DFG. Opt. Express 2009, 17, 14832–14838. [Google Scholar] [CrossRef] [PubMed]
- Kawase, K.; Hatanaka, T.; Takahashi, H.; Nakamura, K.; Taniuchi, T.; Ito, H. Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate. Opt. Lett. 2000, 25, 1714–1716. [Google Scholar] [CrossRef] [PubMed]
- Tokizane, Y.; Nawata, K.; Han, Z.L.; Koyama, M.; Notake, T.; Takida, Y.; Minamide, H. Tunable terahertz waves from 4-dimethylamino-N′-methyl-4′-stibazolium tosylate pumped with dual-wavelength injection-seeded optical parametric generation. Appl. Phys. Express 2017, 10, 022101. [Google Scholar] [CrossRef]
- Nawata, K.; Abe, T.; Miyake, Y.; Sato, A.; Asai, K.; Ito, H.; Minamide, H. Efficient Terahertz-Wave Generation Using a 4-Dimethylamino-N′-methyl-4′-stilbazolium Tosylate Pumped by a Dual-Wavelength Neodymium-Doped Yttrium Aluminum Garnet Laser. Appl. Phys. Express 2012, 5, 112401. [Google Scholar] [CrossRef]
- Zhong, K.; Mei, J.L.; Wang, M.R.; Liu, P.X.; Xu, D.G.; Wang, Y.Y.; Shi, W.; Yao, J.Q.; Teng, B.; Xiao, Y. Compact High-Repetition-Rate Monochromatic Terahertz Source Based on Difference Frequency Generation from a Dual-Wavelength Nd:YAG Laser and DAST Crystal. J. Infrared Millim. Teraherz Waves 2017, 38, 87–95. [Google Scholar] [CrossRef]
- Liu, P.X.; Qi, F.; Li, W.F.; Liu, Z.Y.; Wang, Y.L.; Ding, X.; Yao, J.Q. Self-Raman Nd-doped vanadate laser: A pump source of organic crystal based difference frequency generation. J. Mod. Opt. 2020, 67, 914–919. [Google Scholar] [CrossRef]
- Yang, S.G.; Wang, X.J.; Wu, Z.H.; Jin, C.; Chen, M.H.; Xie, S.Z. Narrow Linewidth Terahertz Generation Engined by All-Fiber Parametric Optical Source. IEEE Photonics J. 2015, 7, 1300407. [Google Scholar] [CrossRef]
- Vicario, C.; Jazbinsek, M.; Ovchinnikov, A.V.; Chefonov, O.V.; Ashitkov, S.I.; Agranat, M.B.; Hauri, C.P. High efficiency THz generation in DSTMS, DAST and OH1 pumped by Cr:forsterite laser. Opt. Express 2015, 23, 4573–4580. [Google Scholar] [CrossRef]
- Liu, P.X.; Qi, F.; Pang, Z.B.; Li, W.F.; Wang, Y.L.; Liu, Z.Y.; Meng, D.L. Cascaded difference frequency generation in organic crystal 4-dimethylamino-N′-methyl-4′-stilbazolium tosylate. Opt. Lett. 2019, 44, 4965–4968. [Google Scholar] [CrossRef]
- Liu, P.X.; Zhang, X.Y.; Yan, C.; Xu, D.G.; Li, Y.; Shi, W.; Zhang, G.C.; Zhang, X.Z.; Yao, J.Q.; Wu, Y.C. Widely tunable and monochromatic terahertz difference frequency generation with organic crystal 2-(3-(4-hydroxystyryl)-5,5-dime-thylcyclohex-2-enylidene) malononitrile. Appl. Phys. Lett. 2016, 108, 011104. [Google Scholar]
- Matsukawa, T.; Notake, T.; Nawata, K.; Inada, S.; Okada, S.; Minamide, H. Terahertz-wave generation from 4-dimethylamino-N′-methyl-4′-stilbazolium p-bromobenzenesulfonate crystal: Effect of halogen substitution in a counter benzenesulfonate of stilbazolium derivatives. Opt. Mater. 2014, 36, 1995–1999. [Google Scholar] [CrossRef]
- Taniuchi, T.; Ikeda, S.; Mineno, Y.; Okade, S.; Nakanishi, H. Terahertz Properties of a New Organic Crystal, 4-Dimethylamino-N′-methyl-4′-stilbazolium p-Chlorobenzenesulfonate. Jpn. J. Appl. Phys. 2005, 44, L932–L934. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Jiang, X.X.; Liu, P.X.; Li, Y.; Tu, H.; Lin, Z.S.; Xu, D.G.; Zhang, G.C.; Wu, Y.C.; Yao, J.Q. Molecular design on isoxazolone-based derivatives with large second-order harmonic generation effect and terahertz wave generation. CrystEngComm 2016, 18, 3667–3673. [Google Scholar] [CrossRef]
- Tomita, I.; Suzuki, H.; Ito, H.; Takenouchi, H.; Ajito, K.; Rungsawang, R.; Ueno, Y. Terahertz-wave generation from quasi-phase-matched GaP for 1.55 μm pumping. Appl. Phys. Lett. 2006, 88, 071118. [Google Scholar] [CrossRef]
- Schaar, J.E.; Vodopyanov, K.L.; Kuo, P.S.; Fejer, M.M.; Yu, X.J.; Lin, A. Harris Terahertz Sources Based on Intracavity Parametric Down-Conversion in Quasi-Phase-Matched Gallium Arsenide. IEEE J. Sel. Top. Quantum Electron. 2008, 14, 354–362. [Google Scholar] [CrossRef]
- Kiessling, J.; Breunig, I.; Schunemann, P.G.; Buse, K.; Vodopyanov, K.L. High power and spectral purity continuous-wave photonic THz source tunable from 1 to 4.5 THz for nonlinear molecular spectroscopy. New J. Phys. 2013, 15, 105014. [Google Scholar] [CrossRef]
- Majkic, A.; Zgonik, M.; Petelin, A.; Jazbinsek, M.; Ruiz, B.; Medrano, C.; Gunter, P. Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and quasi-phase matching in organic crystals OH1. Appl. Phys. Lett. 2014, 105, 141115. [Google Scholar] [CrossRef]
- Sasaki, Y.; Avetisyan, Y.; Yokoyama, H.; Ito, H. Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate. Opt. Lett. 2005, 30, 2927–2929. [Google Scholar] [CrossRef]
- Suizu, K.; Suzuki, Y.; Sasaki, Y.; Ito, H.; Avetisyan, Y. Surface-emitted terahertz-wave generation by ridged periodically poled lithium niobate and enhancement by mixing of two terahertz waves. Opt. Lett. 2006, 31, 957–959. [Google Scholar] [CrossRef]
- Paul, J.R.; Scheller, M.; Laurain, A.; Young, A.; Koch, S.W.; Moloney, J. Narrow linewidth single-frequency terahertz source based on difference frequency generation of vertical-external-cavity source-emitting lasers in an external resonance cavity. Opt. Lett. 2013, 38, 3654–3657. [Google Scholar] [CrossRef]
- Yu, N.E.; Lee, K.-S.; Ko, D.-K.; Takekawa, S.; Kitamura, K. Fine Tuning Terahertz Generation in fanned-out periodically poled stoichiometric Lithium Tantalate Crystal. In Proceedings of the IEEE Conference on Infrared Millimeter and Terahertz Waves (IRMMW-THz), Rome, Italy, 5–10 September 2010. [Google Scholar]
- Lee, Y.-S.; Amer, N.; Hurlbut, W.C. Terahertz pulse shaping via optical rectification in poled lithium niobate. Appl. Phys. Lett. 2003, 82, 170–172. [Google Scholar] [CrossRef]
- Li, Z.Y.; Sun, X.Q.; Zhang, H.T.; Li, Y.J.; Yuan, B.; Jiao, B.Z.; Zhao, J.; Tan, L.; Bing, P.B.; Wang, Z.; et al. High-efficiency terahertz wave generation in aperiodically poled lithium niobate by cascaded difference frequency generation. J. Opt. Soc. Am. B 2020, 37, 2416–2422. [Google Scholar] [CrossRef]
- Mei, J.L.; Zhong, K.; Wang, M.R.; Liu, P.X.; Xu, D.G.; Wang, Y.Y.; Shi, W.; Yao, J.Q.; Norwood, R.A.; Peyghambarian, N. Compact high-repetition-rate optical terahertz source based on difference frequency generation from an efficient 2-μm dual-wavelength KTP OPO. In Proceedings of the International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Copenhagen, Denmark, 25–30 September 2016. [Google Scholar]
- Vodopyanov, K.L. Optical generation of narrow-band terahertz packets in periodically-inverted electro-optic crystals: Conversion efficiency and optimal laser pulse format. Opt. Express 2006, 14, 2263–2276. [Google Scholar] [CrossRef]
- Stepanov, A.G.; Rogov, A.; Bonacina, L.; Wolf, J.P.; Hauri, C.P. Tailoring single-cycle electromagnetic pulses in the 2-9 THz frequency range using DAST/SiO2 multilayer structures pumped at Ti:sapphire wavelength. Opt. Express 2014, 22, 21618–21625. [Google Scholar] [CrossRef] [PubMed]
- Yarborough, J.M.; Sussman, S.S.; Purhoff, H.E.; Pantell, R.H.; Johnson, B.C. Efficient, Tunable Optical Emission from LiNbO3 Without a Resonator. Appl. Phys. Lett. 1969, 15, 102–105. [Google Scholar] [CrossRef]
- Aggarwal, R.L.; Lax, B.; Favrot, G. Noncollinear phase matching in GaAs. Appl. Phys. Lett. 1973, 22, 329–330. [Google Scholar] [CrossRef]
- Tochitsky, S.Y.; Sung, C.; Trubnick, S.E.; Joshi, C.; Vodopyanov, K.L. High-power tunable, 0.5–3 THz radiation source based on nonlinear difference frequency mixing of CO2 laser lines. J. Opt. Soc. Am. B 2007, 24, 2509–2516. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, X.; Miao, L.; Zuo, D.; Cheng, Z. Efficient and widely step-tunable terahertz generation with a dual-wavelength CO2 laser. Appl. Phys. B 2011, 103, 387–390. [Google Scholar] [CrossRef]
- Tanabe, T.; Suto, K.; Nishizawa, J.; Saito, K.; Kimura, T. Tunable terahertz wave generation in the 3- to 7-THz region from GaP. Appl. Phys. Lett. 2003, 83, 237–239. [Google Scholar] [CrossRef]
- Suto, K.; Sasaki, T.; Tanabe, T.; Saito, K.; Nishizawa, J.; Ito, M. GaP THz wave generator and THz spectrometer using Cr:Forsterite lasers. Rev. Sci. Instrum. 2005, 76, 123109. [Google Scholar] [CrossRef]
- Nishizawa, J.; Tanabe, T.; Suto, K.; Watanabe, Y.; Sasaki, T.; Oyama, Y. Continuous-Wave Frequency-Tunable Terahertz-Wave Generation from GaP. IEEE Photonics Technol. Lett. 2006, 18, 2008–2010. [Google Scholar] [CrossRef]
- Malinowski, A.; Lin, D.; Alam, S.U.; Zhang, Z.; Ibsen, M.; Young, J.; Wright, P.; Ozanyan, K.; Stringer, M.; Miles, R.E.; et al. Fiber MOPA based tunable source for terahertz spectroscopy. Laser Phys. Lett. 2012, 9, 350–354. [Google Scholar] [CrossRef]
- Sasaki, T.; Tanabe, T.; Nishizawa, J. Frequency Stabilized GaP Continuous-Wave Terahertz Signal Generator for High-Resolution Spectroscopy. Opt. Photonics J. 2014, 4, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.H.; Ikari, T. Enhancement of the output power of a terahertz parametric oscillator with recycled pump beam. Appl. Phys. Lett. 2009, 95, 141105. [Google Scholar] [CrossRef]
- Minamide, H.; Ikari, T.; Ito, H. Frequency-agile terahertz-wave parametric oscillator in a ring-cavity configuration. Rev. Sci. Instrum. 2009, 80, 123104. [Google Scholar] [CrossRef]
- Li, Z.Y.; Bing, P.B.; Yao, J.; Xu, D.; Zhong, K. High-powered tunable terahertz source based on a surface-emitted terahertz-wave parametric oscillator. Opt. Eng. 2012, 51, 091605. [Google Scholar] [CrossRef]
- Lee, A.J.; Pask, H.M. Continuous wave, frequency-tunable terahertz laser radiation generated via stimulated polariton scattering. Opt. Lett. 2014, 39, 442–445. [Google Scholar] [CrossRef]
- Minamide, H.; Hayashi, S.; Nawata, K.; Taira, T.; Shikata, J.; Kawase, K. Kilowatt-peak Terahertz-wave Generation and Sub-femtojoule Terahertz-wave Pulse Detection Based on Nonlinear Optical Wavelength-conversion at Room Temperature. J. Infrared Millim. Terahertz Waves 2014, 35, 25–37. [Google Scholar] [CrossRef]
- Wu, M.-H.; Tsai, W.-C.; Chiu, Y.-C.; Huang, Y.-C. Generation of ~100 kW narrow-line far-infrared radiation from a KTP off-axis THz parametric oscillator. Optica 2019, 6, 723–730. [Google Scholar] [CrossRef]
- Kong, W.; Li, Z.; Yan, Q.; Zou, M.; Zhou, X.; Qin, Y. Theoretical and experimental study on the enhancement of seed injection in terahertz-wave generation. J. Opt. Soc. Am. B 2020, 37, 2479–2484. [Google Scholar] [CrossRef]
- Gao, F.; Li, Y.; Cong, Z.; Zhang, X.; Liu, Z.; Chen, X.; Qin, Z.; Wang, Z.; Ming, N. Injection-Seeded Terahertz Parametric Oscillator with a Ring-Cavity Configuration. Crystals 2020, 10, 732. [Google Scholar] [CrossRef]
- Li, W.F.; Qi, F.; Liu, P.X.; Wang, Y.L.; Liu, Z.Y. Cascaded effect in a high-peak-power terahertz-wave parametric generator. Opt. Lett. 2022, 47, 178–181. [Google Scholar] [CrossRef]
- Yan, C.; Xu, D.G.; Wang, Y.Y.; Wang, Z.H.; Wei, Z.Y.; Tang, L.H.; He, Y.X.; Li, J.; Zhong, K.; Shi, W.; et al. Enhanced Terahertz Wave Generation via Stokes Wave Recycling in Non-Synchronously Picosecond Pulse Pumped Terahertz Source. IEEE Photonics J. 2019, 11, 1–8. [Google Scholar] [CrossRef]
- Wada, Y.; Satoh, T.; Higashi, Y.; Urata, Y. Compact Tunable Narrowband Terahertz-Wave Source Based on Difference Frequency Generation Pumped by Dual Fiber Lasers in MgO:LiNbO3. J. Infrared Millim. Terahertz Waves 2017, 38, 1471–1476. [Google Scholar] [CrossRef]
- Akiba, T.; Akimoto, Y.; Tamura, M.; Suizu, K.; Miyamoto, K.; Omatsu, T.; Takayanagi, J.; Takada, T.; Kawase, K. Broadband THz-wave generation by satisfying the noncollinear phase-matching condition with a reflected signal beam. Appl. Opt. 2013, 52, 8305–8309. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.T.; Cong, Z.H.; Chen, X.H.; Zhang, X.Y.; Qin, Z.G.; Tang, G.Q.; Li, N.; Wang, C.; Lu, Q.M. Terahertz parametric oscillator based on KTiOPO4 crystal. Opt. Lett. 2014, 39, 3706–3709. [Google Scholar] [CrossRef]
- Wang, W.T.; Cong, Z.H.; Liu, Z.J.; Zhang, X.Y.; Qin, Z.G.; Tang, G.Q.; Li, N.; Zhang, Y.G.; Lu, Q.M. THz-wave generation via stimulated polariton scattering in KTiOAsO4 crystal. Opt. Express 2014, 22, 17092–17098. [Google Scholar] [CrossRef]
- Ortega, T.A.; Pask, H.M.; Spence, D.J.; Lee, A.J. Stimulated polariton scattering in an intracavity RbTiOPO4 crystal generating frequency-tunable THz output. Opt. Express 2016, 24, 10254–10264. [Google Scholar] [CrossRef]
- Yan, C.; Wang, Y.Y.; Xu, D.G.; Xu, W.T.; Liu, P.X.; Yan, D.X.; Duan, P.; Zhong, K.; Shi, W.; Yao, J.Q. Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator. Appl. Phys. Lett. 2016, 108, 011107. [Google Scholar] [CrossRef]
- Cherenkov, P.A. Visible glow of pure liquids under γ-irradiation. Dokl. Akad. Nauk. SSSR 1934, 2, 451. [Google Scholar]
- A’skaryan, G.A. Cherenkov radiation and transition radiation from electromagnetic waves. Sov. Phys. JETP 1962, 37, 594–596. [Google Scholar]
- Auston, D.H.; Cheung, K.P.; Valdmanis, J.A.; Kleinman, D.A. Cherenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media. Phys. Rev. Lett. 1984, 53, 1555–1558. [Google Scholar] [CrossRef]
- Hebling, J.; Almási, G.; Kozma, I.Z.; Kuhl, J. Velocity matching by pulse front tilting for large-area THz-pulse generation. Opt. Express 2002, 10, 1161–1166. [Google Scholar] [CrossRef]
- Shibuya, T.; Tsutsui, T.; Suizu, K.; Akiba, T.; Kawase, K. Efficient Cherenkov-Type Phase-Matched Widely Tunable Terahertz-Wave Generation via an Optimized Pump Beam Shape. Appl. Phys. Express 2009, 2, 032302. [Google Scholar] [CrossRef]
- Shibuya, T.; Suizu, K.; Kawase, K. Widely Tunable Monochromatic Cherenkov Phase-Matched Terahertz Wave Generation from Bulk Lithium Niobate. Appl. Phys. Express 2010, 3, 082201. [Google Scholar] [CrossRef]
- Liu, P.X.; Xu, D.G.; Li, J.Q.; Yan, C.; Li, Z.X.; Wang, Y.Y.; Yao, J.Q. Monochromatic Cherenkov THz Source Pumped by a Singly Resonant Optical Parametric Oscillator. IEEE Photonics Technol. Lett. 2014, 26, 494–496. [Google Scholar] [CrossRef]
- Akiba, T.; Akimoto, Y.; Suizu, K.; Miyamoto, K.; Omatsu, T. Evaluation of polarized terahertz waves generated by Cherenkov phase matching. Appl. Opt. 2014, 53, 1518–1522. [Google Scholar] [CrossRef]
- Suizu, K.; Shibuya, T.; Uchida, H.; Kawase, K. Prism-coupled Cherenkov phase-matched terahertz wave generation using a DAST crystal. Opt. Express 2010, 18, 3338–3344. [Google Scholar] [CrossRef]
- Suizu, K.; Akiba, T. Behavior of three waves in Cherenkov phase matched monochromatic terahertz wave generation investigated by numerical analysis. Jpn. J. Appl. Phys. 2014, 53, 092701. [Google Scholar] [CrossRef]
- Stepanov, A.G.; Hebling, J.; Kuhl, J. THz generation via optical rectification with ultrashort laser pulse focused to a line. Appl. Phys. B 2005, 81, 23–26. [Google Scholar] [CrossRef]
- Theuer, M.; Torosyan, G. Effificient generation of Cherenkov-type terahertz radiation from a lithium niobate crystal with a silicon prism output coupler. Appl. Phys. Lett. 2006, 88, 071122. [Google Scholar] [CrossRef]
- Akiba, T.; Kaneko, N.; Suizu, K.; Miyamoto, K.; Omatsu, T. Real-time terahertz wave sensing via infrared detection interacted with evanescent terahertz waves. Opt. Rev. 2015, 22, 166–169. [Google Scholar] [CrossRef]
- Takeya, K.; Okimura, K.; Oota, K.; Kawase, K.; Uchida, H. Pump wavelength-independent broadband terahertz generation from a nonlinear optical crystal. Opt. Lett. 2018, 43, 4100–4103. [Google Scholar] [CrossRef] [PubMed]
- Bakunov, M.I.; Bodrov, S.B.; Tsarev, M.V. Terahertz emission from a laser pulse with tilted front: Phase-matching versus Cherenkov effect. J. Appl. Phys. 2008, 104, 073105. [Google Scholar] [CrossRef]
- L’huillier, J.A.; Torosyan, G.; Theuer, M.; Avetisyan, Y.; Beigang, R. Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate—Part 1: Theory. Appl. Phys. B 2007, 86, 185–196. [Google Scholar] [CrossRef]
- L’huillier, J.A.; Torosyan, G.; Theuer, M.; Rau, C.; Avetisyan, Y.; Beigang, R. Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate—Part 2: Experiments. Appl. Phys. B 2007, 86, 197–208. [Google Scholar] [CrossRef]
- Molter, D.; Theuer, M.; Beigang, R. Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate. Opt. Express 2009, 17, 6623–6628. [Google Scholar] [CrossRef] [PubMed]
- Nawata, K.; Tokizane, Y.; Takida, Y.; Minamide, H. Tunable Backward Terahertz-wave Parametric Oscillation. Sci. Rep. 2019, 9, 726. [Google Scholar] [CrossRef]
- Vodopyanov, K.L.; Avetisyan, Y.H. Optical terahertz wave generation in a planar GaAs waveguide. Opt. Lett. 2008, 33, 2314–2316. [Google Scholar] [CrossRef]
- Saito, K.; Tanabe, T.; Oyama, Y. Widely tunable terahertz-wave generation from planar GaP waveguides via difference frequency generation under collinear phase-matching condition. Jpn. J. Appl. Phys. 2014, 53, 102203. [Google Scholar] [CrossRef]
- Nishizawa, J.-I.; Suto, K.; Tanabe, T.; Saito, K.; Kimura, T.; Oyama, Y. THz Generation from GaP Rod-Type Waveguides. IEEE Photonics Technol. Lett. 2007, 19, 143–145. [Google Scholar] [CrossRef]
- Saito, K.; Tanabe, T.; Oyama, Y. Polarization selective terahertz-wave generation from GaP ridge waveguide under collinear phase-matched difference-frequency mixing. Jpn. J. Appl. Phys. 2014, 53, 102102. [Google Scholar] [CrossRef]
- Cherchi, M.; Taormina, A.; Busacca, A.C.; Oliveri, R.L.; Bivona, S.; Cino, A.C.; Stivala, S.; Sanseverino, S.R.; Leone, C. Exploiting the Optical Quadratic Nonlinearity of Zinc-Blende Semiconductors for Guided-Wave Terahertz Generation: A Material Comparison. IEEE J. Quantum Electron. 2010, 46, 368–376. [Google Scholar] [CrossRef]
- Liu, W.L.; Zhang, J.J.; Rioux, M.; Viens, J.; Messaddeq, Y.; Yao, J.P. Frequency Tunable Continuous THz Wave Generation in a Periodically Poled Fiber. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 470–477. [Google Scholar] [CrossRef]
- Bodrov, S.B.; Bakunov, M.I.; Hangyo, M. Effificient Cherenkov emission of broadband terahertz radiation from an ultrashort laser pulse in a sandwich structure with nonlinear core. J. Appl. Phys. 2008, 104, 093105. [Google Scholar] [CrossRef]
- Suizu, K.; Koketsu, K.; Shibuya, T.; Tsutsui, T.; Akiba, T.; Kawase, K. Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation. Opt. Express 2009, 17, 6676–6681. [Google Scholar] [CrossRef]
- Liu, P.X.; Xu, D.G.; Wang, W.P.; Liu, C.M.; Yin, S.J.; Ding, X.; Wang, Y.Y.; Yao, J.Q. Widely Tunable, Monochromatic THz Generation via Cherenkov-Type Difference Frequency Generation in an Asymmetric Waveguide. IEEE J. Quantum Electron. 2013, 49, 179–185. [Google Scholar] [CrossRef]
- Bodrov, S.B.; Ilyakov, I.E.; Shishkin, B.V.; Bakunov, M.I. Highly efficient Cherenkov-type terahertz generation by 2-µm wavelength ultrashort laser pulses in a prism-coupled LiNbO3 layer. Opt. Express 2019, 27, 36059–36065. [Google Scholar] [CrossRef]
- De Regis, M.; Bartalini, S.; Ravaro, M.; Calonico, D.; De Natale, P.; Consolino, L. Room-Temperature Continuous-Wave Frequency-Referenced Spectrometer up to 7.5 THz. Phys. Rev. Appl. 2018, 10, 064041. [Google Scholar] [CrossRef]
- Vijayraghavan, K.; Jiang, Y.; Jang, M.; Jiang, A.; Choutagunta, K.; Vizbaras, A.; Demmerle, F.; Boehm, G.; Amann, M.C.; Belkin, M.A. Broadly tunable terahertz generation in mid-infrared quantum cascade lasers. Nat. Commun. 2013, 4, 2021. [Google Scholar] [CrossRef]
- Armstrong, J.A.; Bloembergen, N.; Ducuing, J.; Pershan, P.S. Interactions between Light Waves in a Nonlinear Dielectric. Phys. Rev. 1962, 127, 449–470. [Google Scholar] [CrossRef]
- Raybaut, M.; Godard, A.; Lubin, C.; Lefebvre, M.; Rosencher, E. A Guided Wave Approach to Fresnel Phase Matching: Application to Parametric Oscillation and Terahertz-Wave Generation. In Proceedings of the IEEE Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest, Long Beach, CA, USA, 21–24 May 2006. [Google Scholar]
- Saito, K.; Tanabe, T.; Oyama, Y. Cascaded terahertz-wave generation efficiency in excess of the Manley–Rowe limit using a cavity phase-matched optical parametric oscillator. J. Opt. Soc. Am. B 2015, 32, 617–621. [Google Scholar] [CrossRef]
- Liu, P.X.; Qi, F.; Li, W.F.; Wang, Y.L.; Liu, Z.Y.; Wu, H.M.; Ning, W.; Shi, W.; Yao, J.Q. Low-threshold terahertz-wave generation based on a cavity phase-matched parametric process in a Fabry–Perot microresonator. J. Opt. Soc. Am. B 2018, 35, 68–72. [Google Scholar] [CrossRef]
- Burgess, I.B.; Rodriguez, A.W.; McCutcheon, M.W.; Bravo-Abad, J.; Zhang, Y.N.; Johnson, S.G.; Lončar, M. Difference-frequency generation with quantum limited efficiency in triply-resonant nonlinear cavities. Opt. Express 2009, 17, 9241–9251. [Google Scholar] [CrossRef]
- Sinha, R.; Karabiyik, M.; Ahmadivand, A.; Al-Amin, C.; Vabbina, P.K.; Shur, M.; Pala, N. Tunable, Room Temperature CMOS-Compatible THz Emitters Based on Nonlinear Mixing in Microdisk Resonators. J. Infrared Millim. Terahertz Waves 2016, 37, 230–242. [Google Scholar] [CrossRef]
- Yang, J.W.; Wang, C. Efficient terahertz generation scheme in a thin-film lithium niobate-silicon hybrid platform. Opt. Express 2021, 29, 16477–16486. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, P.; Niu, C.; Qi, F.; Li, W.; Li, W.; Fu, Q.; Guo, L.; Li, Z. Phase-Matching in Nonlinear Crystal-Based Monochromatic Terahertz-Wave Generation. Crystals 2022, 12, 1231. https://doi.org/10.3390/cryst12091231
Liu P, Niu C, Qi F, Li W, Li W, Fu Q, Guo L, Li Z. Phase-Matching in Nonlinear Crystal-Based Monochromatic Terahertz-Wave Generation. Crystals. 2022; 12(9):1231. https://doi.org/10.3390/cryst12091231
Chicago/Turabian StyleLiu, Pengxiang, Chuncao Niu, Feng Qi, Wei Li, Weifan Li, Qiaoqiao Fu, Liyuan Guo, and Zhongyang Li. 2022. "Phase-Matching in Nonlinear Crystal-Based Monochromatic Terahertz-Wave Generation" Crystals 12, no. 9: 1231. https://doi.org/10.3390/cryst12091231
APA StyleLiu, P., Niu, C., Qi, F., Li, W., Li, W., Fu, Q., Guo, L., & Li, Z. (2022). Phase-Matching in Nonlinear Crystal-Based Monochromatic Terahertz-Wave Generation. Crystals, 12(9), 1231. https://doi.org/10.3390/cryst12091231