Study of Optical Rectification in Polycrystalline Materials Based on Random Quasi-Phase Matching
Abstract
:1. Introduction
2. Modeling
2.1. Polycrystalline ZnSe Sample and Grain Morphology
2.2. Theoretical Model of RQPM OR in Polycrystalline ZnSe
3. Results and Discussion
3.1. Dependence of Terahertz Generation on Polycrystalline Parameters
3.1.1. Grain Size Distribution
3.1.2. Sample Thickness
3.2. Dependence of Terahertz Generation on Pump Laser Parameters
3.2.1. Central Wavelength of the Pump Laser
3.2.2. Pump Pulse Duration
3.3. Conversion Efficiency of RQPM OR
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- O’Hara, J.F.; Ekin, S.; Choi, W.; Song, I. A perspective on terahertz next-generation wireless communications. Technologies 2019, 7, 43. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.Q.; Deng, B.; Qin, Y.L. Review of terahertz radar technology. J. Radars 2018, 7, 1–21. [Google Scholar]
- D’Arco, A.; Di Fabrizio, M.; Dolci, V.; Petrarca, M.; Lupi, S. THz pulsed imaging in biomedical applications. Condens. Matter 2020, 5, 25. [Google Scholar] [CrossRef] [Green Version]
- Vaks, V.L.; Anfertev, V.A.; Balakirev, V.Y.; Basov, S.A.; Domracheva, E.G.; Illyuk, A.V.; Kupriyanov, P.V.; Pripolzin, S.I.; Chernyaeva, M.B. High resolution terahertz spectroscopy for analytical applications. Physics-Uspekhi 2020, 63, 708–720. [Google Scholar] [CrossRef]
- Bogue, R. Sensing with terahertz radiation: A review of recent progress. Sens. Rev. 2018, 38, 216–222. [Google Scholar] [CrossRef]
- Neu, J.; Schmuttenmaer, C.A. Tutorial: An introduction to terahertz time domain spectroscopy (THz-TDS). J. Appl. Phys. 2018, 124, 231101. [Google Scholar] [CrossRef] [Green Version]
- Zhong, K.; Liu, C.; Wang, M.R.; Shi, J.; Kang, B.; Yuan, Z.R.; Li, J.N.; Xu, D.G.; Shi, W.; Yao, J.Q. Linear optical properties of ZnGeP2 in the terahertz range. Opt. Mater. Express 2017, 7, 3571–3579. [Google Scholar] [CrossRef]
- Fischer, B.; Hoffmann, M.; Helm, H.; Modjesch, G.; Uhd Jepsen, P. Chemical recognition in terahertz time-domain spectroscopy and imaging. Semicond. Sci. Technol. 2005, 20, S246–S253. [Google Scholar] [CrossRef] [Green Version]
- Naftaly, M.; Miles, R.E. Terahertz time-domain spectroscopy for material characterization. Proc. IEEE 2007, 95, 1658–1665. [Google Scholar] [CrossRef]
- Zhong, K.; Shi, W.; Xu, D.G.; Liu, P.X.; Wang, Y.Y.; Mei, J.L.; Yan, C.; Fu, S.J.; Yao, J.Q. Optically pumped terahertz sources. Sci. China Technol. Sci. 2017, 60, 1801–1818. [Google Scholar] [CrossRef]
- Vidal, S.; Degert, J.; Tondusson, M.; Freysz, E.; Oberlé, J. Optimized terahertz generation via optical rectification in ZnTe crystals. J. Opt. Soc. Am. B 2014, 31, 149–153. [Google Scholar] [CrossRef]
- Helling, J.; Stepanov, A.G.; Almási, G.; Bartal, B.; Kuhl, J. Tunable THz Pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts. Appl. Phys. B 2004, 78, 593–599. [Google Scholar] [CrossRef]
- Aoki, K.; Savolainen, J.; Havenith, M. Broadband terahertz pulse generation by optical rectification in GaP crystals. Appl. Phys. Lett. 2017, 110, 201103. [Google Scholar] [CrossRef]
- Nagai, M.; Tanaka, K.; Ohtake, H.; Bessho, T.; Sugiura, T.; Hirosumi, T.; Yoshida, M. Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 μm fiber laser pulses. Appl. Phys. Lett. 2004, 85, 3974–3976. [Google Scholar] [CrossRef]
- Zhong, K.; Li, F.J.; Qiao, H.Z.; Zhang, X.Z.; Xu, D.G.; Yao, J.Q. Wideband collinear phase matching in cubic semiconductors via the linear electro-optic effect: A theoretical study. Crystals 2022, 12, 764. [Google Scholar] [CrossRef]
- Baudrier-Raybaut, M.; Haïdar, R.; Kupecek, P.; Lemasson, P.; Rosencher, E. Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials. Nature 2004, 432, 374–376. [Google Scholar] [CrossRef]
- Videl, X.; Martorell, J. Generation of light in media with a random distribution of nonlinear domains. Phys. Rev. Lett. 2006, 97, 013902. [Google Scholar] [CrossRef] [Green Version]
- Vasilyev, S.; Moskalev, I.; Mirov, M.; Smolski, V.; Mirov, S.; Gapontsev, V. Ultrafast middle-IR lasers and amplifiers based on polycrystalline Cr:ZnS and Cr:ZnSe. Opt. Mater. Express 2017, 7, 2636–2650. [Google Scholar] [CrossRef]
- Ru, Q.T.; Lee, N.; Chen, X.; Zhong, K.; Tsoy, G.; Mirov, M.; Vasilyev, S.; Mirov, S.B.; Vodopyanov, K.L. Optical parametric oscillation in a random polycrystalline medium. Optica 2017, 4, 617–618. [Google Scholar] [CrossRef]
- Zhang, J.W.; Fritsch, K.; Wang, Q.; Krausz, F.; Mak, K.F.; Pronin, O. Intra-pulse difference-frequency generation of mid-infrared (2.7–20μm) by random quasi-phase-matching. Opt. Lett. 2019, 44, 2986–2989. [Google Scholar] [CrossRef] [Green Version]
- Ru, Q.T.; Kawamori, T.; Lee, N.; Chen, X.; Zhong, K.; Mirov, M.; Vasilyev, S.; Mirov, S.B.; Vodopyanov, K.L. Optical paramet-ric oscillation in a random poly-crystalline medium: ZnSe ceramic. Proc. SPIE 2018, 10516, 166–174. [Google Scholar]
- Kawamori, T.; Ru, Q.T.; Vodopyanov, K.L. Comprehensive model for randomly phase-matched frequency conversion in zinc-blende polycrystals and experimental results for ZnSe. Phys. Rev. Appl. 2019, 11, 054015. [Google Scholar] [CrossRef]
- Liu, K.F.; Zhong, K.; Lu, Z.T.; Xu, D.G.; Yao, J.Q. Effects of grain morphology on nonlinear conversion efficiency of random quasi-phase matching in polycrystalline materials. IEEE Photonics J. 2020, 12, 2200910. [Google Scholar] [CrossRef]
- Müller, J.S.; Morandi, A.; Grange, R.; Savo, R. Modeling of random quasi-phase-matching in birefringent disordered media. Phys. Rev. Appl. 2021, 15, 064070. [Google Scholar] [CrossRef]
- Li, H.H. Refractive index of ZnS, ZnSe, and ZnTe and its wavelength and temperature derivatives. J. Phys. Chem. Ref. Data 1984, 13, 103–150. [Google Scholar] [CrossRef]
- Quey, R.; Renversade, L. Optimal polyhedral description of 3D polycrystals: Method and application to statistical and synchrotron X-ray diffraction data. Comput. Methods Appl. Mech. Eng. 2018, 330, 308–333. [Google Scholar] [CrossRef] [Green Version]
- Neper: Polycrystal Generation and Meshing. Available online: http://neper.info/ (accessed on 11 August 2022).
- Vodopyanov, K.L. Optical generation of narrow-band terahertz packets in periodically-inverted electro-optic crystals: Conversion efficiency and optimal laser pulse format. Opt. Express 2006, 14, 2263–2276. [Google Scholar] [CrossRef]
- Marsaglia, G. Choosing a point from the surface of a sphere. Ann. Math. Stat. 1972, 43, 645–646. [Google Scholar] [CrossRef]
- Muller, M.E. A note on a method for generating points uniformly on n-dimensional spheres. Commun. ACM 1959, 2, 19–20. [Google Scholar] [CrossRef]
- Zhong, K.; Wang, S.J.; Liu, K.F.; Xu, D.G.; Yao, J.Q. Fourier transform analysis on random quasi-phase-matched nonlinear optical interactions. IEEE Photonics J. 2022, 14, 3005505. [Google Scholar] [CrossRef]
- Li, D.; Ma, G. Pump-wavelength dependence of terahertz radiation via optical rectification in (110)-oriented ZnTe crystal. J. Appl. Phys. 2008, 103, 123101. [Google Scholar] [CrossRef]
- Meng, Q.L.; Ye, R.; Zhong, Z.Q.; Yu, J.L.; Zhang, B. Analysis on THz radiation generation efficiency in optical rectification by tilted-pulse-front pumping. J. Infrared Millim. Terahertz Waves 2015, 36, 866–875. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Zhong, K.; Qiao, H.; Li, F.; Li, J.; Xu, D.; Yao, J. Study of Optical Rectification in Polycrystalline Materials Based on Random Quasi-Phase Matching. Crystals 2022, 12, 1188. https://doi.org/10.3390/cryst12091188
Wang S, Zhong K, Qiao H, Li F, Li J, Xu D, Yao J. Study of Optical Rectification in Polycrystalline Materials Based on Random Quasi-Phase Matching. Crystals. 2022; 12(9):1188. https://doi.org/10.3390/cryst12091188
Chicago/Turabian StyleWang, Sijia, Kai Zhong, Hongzhan Qiao, Fangjie Li, Jining Li, Degang Xu, and Jianquan Yao. 2022. "Study of Optical Rectification in Polycrystalline Materials Based on Random Quasi-Phase Matching" Crystals 12, no. 9: 1188. https://doi.org/10.3390/cryst12091188
APA StyleWang, S., Zhong, K., Qiao, H., Li, F., Li, J., Xu, D., & Yao, J. (2022). Study of Optical Rectification in Polycrystalline Materials Based on Random Quasi-Phase Matching. Crystals, 12(9), 1188. https://doi.org/10.3390/cryst12091188