The Oxidation Process and Methods for Improving Reactivity of Al
Abstract
:1. Introduction
2. The Key Influencing Factors and the Reaction Mechanism during the Al Oxidation Process
2.1. Effect of Diffusion of the Oxidant on the Al Oxidation Process
2.2. Effect of the Al2O3 Shell on the Al Oxidation Process
2.3. Effect of the Inside Active Al on the Al Oxidation Process
2.4. Effect of the Gas Phase Reaction on the Al Oxidation Process
3. Methods for Improving Al Properties
3.1. Improving Diffusion Efficiency
3.1.1. MICs
3.1.2. Flake Al and Nano Al
3.2. Cracking the Al2O3 Shell
3.2.1. Fluorine Modification
3.2.2. TiC Modification
3.2.3. Alloying
3.3. Accelerating the Melting of the inside Active Al
4. New Trend of Improving Reactivity of Aluminum Powder
5. Summary and Prospect
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sui, H.; Huda, N.; Shen, Z.; Wen, J.Z. Al–NiO energetic composites as heat source for joining silicon wafer. J. Mater. Processing Technol. 2020, 279, 116572. [Google Scholar] [CrossRef]
- Nagarjuna, Y.; Lin, J.C.; Wang, S.C.; Hsiao, W.T.; Hsiao, Y.J. AZO-Based ZnO Nanosheet MEMS Sensor with Different Al Concentrations for Enhanced H2S Gas Sensing. Nanomaterials 2021, 11, 3377. [Google Scholar] [CrossRef]
- Kabra, S.; Gharde, S.; Gore, P.M.; Jain, S.; Khire, V.H.; Kandasubramanian, B. Recent trends in nanothermites: Fabrication, characteristics and applications. Nano Express 2020, 1, 032001. [Google Scholar] [CrossRef]
- Guo, X.; Sun, Q.; Liang, T.; Giwa, A.S. Controllable Electrically Guided Nano-Al/MoO3 Energetic-Film Formation on a Semiconductor Bridge with High Reactivity and Combustion Performance. Nanomaterials 2020, 10, 955. [Google Scholar] [CrossRef]
- Ke, X.; Zhou, X.; Gao, H.; Hao, G.; Xiao, L.; Chen, T.; Liu, J.; Jiang, W. Surface functionalized core/shell structured CuO/Al nanothermite with long-term storage stability and steady combustion performance. Mater. Des. 2018, 140, 179–187. [Google Scholar] [CrossRef]
- Cheng, W.; Mu, J.; Li, K.; Xie, Z.; Zhang, P.; An, C.; Ye, B.; Wang, J. Evolution of HTPB/RDX/Al/DOA mixed explosives with 90% solid loading in resonance acoustic mixing process. J. Energetic Mater. 2021, 1–20. [Google Scholar] [CrossRef]
- Warren, A.D.; Lawrence, G.W.; Jouet, R.J.; Elert, M.; Furnish, M.D.; Chau, R.; Holmes, N.; Nguyen, J. Investigation of Formulations Containing Perfluorocoated Oxide-Free Nano-Aluminum; American Institute of Physics: New York, NY, USA, 2007; pp. 1018–1021. [Google Scholar]
- Hardin, D.B.; Zhou, M.; Horie, Y. Ignition Behavior of an Aluminum-Bonded Explosive (ABX). In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2017; p. 040013. [Google Scholar]
- Guo, X.L.; Cao, W.; Duan, Y.L.; Han, Y.; Ran, J.L.; Lu, X.J. Experimental study and numerical simulation of the corner turning of TATB based and CL-20 based polymer bonded explosives. Combust. Explos. Shock. Waves 2016, 52, 719–726. [Google Scholar] [CrossRef]
- Elia, T.; Baudin, G.; Genetier, M.; Lefrançois, A.; Osmont, A.; Catoire, L. Shock to Detonation Transition of Plastic Bonded Aluminized Explosives. Propellants Explos. Pyrotech. 2020, 45, 554–567. [Google Scholar] [CrossRef]
- Yeager, J.D.; Bowden, P.R.; Guildenbecher, D.R.; Olles, J.D. Characterization of hypervelocity metal fragments for explosive initiation. J. Appl. Phys. 2017, 122, 035901. [Google Scholar] [CrossRef]
- Rumchik, C.G.; Jordan, J.L.; Elert, M.; Furnish, M.D.; Chau, R.; Holmes, N.; Nguyen, J. Effect of Aluminum Particle Size on the High Strain Rate Properties of Pressed Aluminized Explosives. Shock. Compress. Condens. Matter 2007, 955, 795–798. [Google Scholar]
- Ao, W.; Wen, Z.; Liu, L.; Wang, Y.; Zhang, Y.; Liu, P.; Qin, Z.; Li, L.K.B. Combustion and agglomeration characteristics of aluminized propellants containing Al/CuO/PVDF metastable intermolecular composites: A highly adjustable functional catalyst. Combust. Flame 2022, 241, 112110. [Google Scholar] [CrossRef]
- Ji, J.; Zhu, W. Thermal decomposition of core–shell structured HMX@Al nanoparticle simulated by reactive molecular dynamics. Comput. Mater. Sci. 2022, 209, 111405. [Google Scholar] [CrossRef]
- Chalghoum, F.; Trache, D.; Benziane, M.; Chelouche, S. Effect of complex metal hydride on the thermal decomposition behavior of AP/HTPB-based aluminized solid rocket propellant. J. Therm. Anal. Calorim. 2022, 1–28. [Google Scholar] [CrossRef]
- Tang, W.; Yang, R.; Zeng, T.; Li, J.; Hu, J.; Zhou, X.; Jiang, E.; Zhang, Y. Positive effects of organic fluoride on reduction of slag accumulation in static testing of solid rocket motors of different diameters. Acta Astronaut. 2022, 194, 277–285. [Google Scholar] [CrossRef]
- Wang, D.; Guo, X.; Wang, Z.; Wang, S.; Wu, C.; Zhao, W.; Fang, H. On the Promotion of TKX-50 Thermal Activity with Aluminum. Propellants Explos. Pyrotech. 2022, 47, e202200012. [Google Scholar] [CrossRef]
- Tian, H.; Wang, Z.; Guo, Z.; Yu, R.; Cai, G.; Zhang, Y. Effect of metal and metalloid solid-fuel additives on performance and nozzle ablation in a hydroxy-terminated polybutadiene based hybrid rocket motor. Aerosp. Sci. Technol. 2022, 123, 107493. [Google Scholar] [CrossRef]
- Maggi, F.; Gariani, G.; Galfetti, L.; DeLuca, L.T. Theoretical analysis of hydrides in solid and hybrid rocket propulsion. Int. J. Hydrog. Energy 2012, 37, 1760–1769. [Google Scholar] [CrossRef]
- Yavor, Y.; Rosenband, V.; Gany, A. Reduced agglomeration in solid propellants containing porous aluminum. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2014, 228, 1857–1862. [Google Scholar]
- Deluca, L.T.; Shimada, T.; Sinditskii, V.P.; Calabro, M. Chemical Rocket Propulsion—A Comprehensive Survey of Energetic Materials; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Joshi, N.; Mathur, N.; Mane, T.; Sundaram, D. Size effect on melting temperatures of alumina nanocrystals: Molecular dynamics simulations and thermodynamic modeling. Comput. Mater. Sci. 2018, 145, 140–153. [Google Scholar] [CrossRef]
- Nazarenko, O.B.; Amelkovich, Y.A.; Sechin, A.I. Characterization of aluminum nanopowders after long-term storage. Appl. Surf. Sci. 2014, 321, 475–480. [Google Scholar] [CrossRef]
- Jin, X.; Li, S.; Yang, Y.; Yang, Y.; Huang, X. Effect of Heating Rate on Ignition Characteristics of Newly Prepared and Aged Aluminum Nanoparticles. Propellants Explos. Pyrotech. 2020, 45, 1428–1435. [Google Scholar] [CrossRef]
- Dreizin, E.L.; Allen, D.J.; Glumac, N.G. Depression of melting point for protective aluminum oxide films. Chem. Phys. Lett. 2015, 618, 63–65. [Google Scholar] [CrossRef]
- Tang, Y.; Kong, C.; Zong, Y.; Li, S.; Zhuo, J.; Yao, Q. Combustion of aluminum nanoparticle agglomerates: From mild oxidation to microexplosion. Proc. Combust. Inst. 2017, 36, 2325–2332. [Google Scholar] [CrossRef]
- Sundaram, D.S.; Puri, P.; Yang, V. A general theory of ignition and combustion of nano- and micron-sized aluminum particles. Combust. Flame 2016, 169, 94–109. [Google Scholar] [CrossRef]
- Wu, B.; Wu, F.; Zhu, Y.; He, A.; Wang, P.; Wu, H. Fast reaction of aluminum nanoparticles promoted by oxide shell. J. Appl. Phys. 2019, 126, 144305. [Google Scholar] [CrossRef]
- Braconnier, A.; Chauveau, C.; Halter, F.; Gallier, S. Experimental investigation of the aluminum combustion in different O2 oxidizing mixtures: Effect of the diluent gases. Exp. Therm. Fluid Sci. 2020, 117, 110110. [Google Scholar] [CrossRef]
- Liang, L.; Guo, X.; Liao, X.; Chang, Z. Improve the interfacial adhesion, corrosion resistance and combustion properties of aluminum powder by modification of nickel and dopamine. Appl. Surf. Sci. 2020, 508, 144790. [Google Scholar] [CrossRef]
- Liang, D.; Xiao, R.; Liu, J.; Wang, Y. Ignition and heterogeneous combustion of aluminum boride and boron–aluminum blend. Aerosp. Sci. Technol. 2019, 84, 1081–1091. [Google Scholar] [CrossRef]
- Rai, A.; Park, K.; Zhou, L.; Zachariah, M.R. Understanding the mechanism of aluminium nanoparticle oxidation. Combust. Theory Model. 2006, 10, 843–859. [Google Scholar] [CrossRef]
- Park, K.; Lee, D.; Rai, A.; Mukherjee, D.; Zachariah, M.R. Size-Resolved Kinetic Measurements of Aluminum Nanoparticle Oxidation with Single Particle Mass Spectrometry. J. Phys. Chem. B 2005, 109, 7290–7299. [Google Scholar] [CrossRef]
- Chowdhury, S.; Sullivan, K.; Piekiel, N.; Zhou, L.; Zachariah, M.R. Diffusive vs Explosive Reaction at the Nanoscale. J. Phys. Chem. C 2010, 114, 9191–9195. [Google Scholar] [CrossRef]
- Trunov, M.A.; Schoenitz, M.; Dreizin, E.L. Effect of polymorphic phase transformations in alumina layer on ignition of aluminium particles. Combust. Theory Model. 2006, 10, 603–623. [Google Scholar] [CrossRef]
- Jeurgens, L.P.H.; Sloof, W.G.; Tichelaar, F.D.; Mittemeijer, E.J. Growth kinetics and mechanisms of aluminum-oxide films formed by thermal oxidation of aluminum. J. Appl. Phys. 2002, 92, 1649–1656. [Google Scholar] [CrossRef]
- Jeurgens, L.P.H.; Sloof, W.G.; Tichelaar, F.D.; Mittemeijer, E.J. Thermodynamic stability of amorphous oxide films on metals: Application to aluminum oxide films on aluminum substrates. Phys. Rev. B 2000, 62, 4707–4719. [Google Scholar] [CrossRef] [Green Version]
- Jeurgens, L.P.H.; Sloof, W.G.; Tichelaar, F.D.; Mittemeijer, E.J. Structure and morphology of aluminium-oxide films formed by thermal oxidation of aluminium. Thin Solid Film. 2002, 418, 89–101. [Google Scholar] [CrossRef]
- Levin, I.; Brandon, D. Metastable Alumina Polymorphs: Crystal Structures and Transition Sequences. J. Am. Ceram. Soc. 1998, 81, 1995–2012. [Google Scholar] [CrossRef]
- Dwivedi, R.K.; Gowda, G. Thermal stability of aluminium oxides prepared from gel. J. Mater. Sci. Lett. 1985, 4, 331–334. [Google Scholar] [CrossRef]
- Ruano, O.A.; Wadsworth, J.; Sherby, O.D. Deformation of fine-grained alumina by grain boundary sliding accommodated by slip. Acta Mater. 2003, 51, 3617–3634. [Google Scholar] [CrossRef]
- Levitas, V.I.; Asay, B.W.; Son, S.F.; Pantoya, M. Melt dispersion mechanism for fast reaction of nanothermites. Appl. Phys. Lett. 2006, 89, 071909. [Google Scholar] [CrossRef]
- Levitas, V.I.; Pantoya, M.L.; Chauhan, G.; Rivero, I. Effect of the Alumina Shell on the Melting Temperature Depression for Aluminum Nanoparticles. J. Phys. Chem. C 2009, 113, 14088–14096. [Google Scholar] [CrossRef] [Green Version]
- Levitas, V.I.; Pantoya, M.L.; Dean, S. Melt dispersion mechanism for fast reaction of aluminum nano- and micron-scale particles: Flame propagation and SEM studies. Combust. Flame 2014, 161, 1668–1677. [Google Scholar] [CrossRef]
- Levitas, V.I.; Pantoya, M.L.; Dikici, B. Melt dispersion versus diffusive oxidation mechanism for aluminum nanoparticles: Critical experiments and controlling parameters. Appl. Phys. Lett. 2008, 92, 011921. [Google Scholar] [CrossRef] [Green Version]
- Levitas, V. Burn time of aluminum nanoparticles: Strong effect of the heating rate and melt-dispersion mechanism. Combust. Flame 2009, 156, 543–546. [Google Scholar] [CrossRef]
- Xiao, L.; Zhao, L.; Ke, X.; Zhang, T.; Hao, G.; Hu, Y.; Zhang, G.; Guo, H.; Jiang, W. Energetic metastable Al/CuO/PVDF/RDX microspheres with enhanced combustion performance. Chem. Eng. Sci. 2021, 231, 116302. [Google Scholar] [CrossRef]
- Matveev, S.; Dlott, D.D.; Valluri, S.K.; Mursalat, M.; Dreizin, E.L. Fast energy release from reactive materials under shock compression. Appl. Phys. Lett. 2021, 118, 101902. [Google Scholar] [CrossRef]
- Yoshinaka, A.; Zhang, F.; Wilson, W.; Elert, M.; Furnish, M.D.; Chau, R.; Holmes, N.; Nguyen, J. Effect of Shock Compression on Aluminum Particles in Condensed Media; American Institute of Physics: New York, NY, USA, 2008; pp. 1057–1060. [Google Scholar]
- Kuhl, A.L.; Neuwald, P.; Reichenbach, H. Effectiveness of combustion of shock-dispersed fuels in calorimeters of various volumes. Combust. Explos. Shock. Waves 2006, 42, 731–734. [Google Scholar] [CrossRef]
- Xiao, L.; Liu, J.; Hao, G.; Ke, X.; Chen, T.; Gao, H.; Rong, Y.-b.; Jin, C.-s.; Li, J.-l.; Jiang, W. Preparation and study of ultrafine flake-aluminum with high reactivity. Def. Technol. 2017, 13, 234–238. [Google Scholar] [CrossRef]
- Weismiller, M.R.; Malchi, J.Y.; Lee, J.G.; Yetter, R.A.; Foley, T.J. Effects of fuel and oxidizer particle dimensions on the propagation of aluminum containing thermites. Proc. Combust. Inst. 2011, 33, 1989–1996. [Google Scholar] [CrossRef]
- Hu, A.; Zou, H.; Shi, W.; Pang, A.m.; Cai, S. Preparation, Microstructure and Thermal Property of ZrAl3/Al Composite Fuels. Propellants Explos. Pyrotech. 2019, 44, 1454–1465. [Google Scholar] [CrossRef]
- Hu, A.; Cai, S. Research on the novel Al–W alloy powder with high volumetric combustion enthalpy. J. Mater. Res. Technol. 2021, 13, 311–320. [Google Scholar] [CrossRef]
- Fu, H.; Zou, H.; Cai, S.-z. The role of microstructure refinement in improving the thermal behavior of gas atomized Al-Eu alloy powder. Adv. Powder Technol. 2016, 27, 1898–1904. [Google Scholar] [CrossRef]
- Wang, D.; Cao, X.; Liu, J.; Zhang, Z.; Jin, X.; Gao, J.; Yu, H.; Sun, S.; Li, F. TF-Al/TiC highly reactive composite particle for application potential in solid propellants. Chem. Eng. J. 2021, 425, 130674. [Google Scholar] [CrossRef]
- Yao, E.; Zhao, N.; Qin, Z.; Ma, H.; Li, H.; Xu, S.; An, T.; Yi, J.; Zhao, F. Thermal Decomposition Behavior and Thermal Safety of Nitrocellulose with Different Shape CuO and Al/CuO Nanothermites. Nanomaterials 2020, 10, 725. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Torabi, M.; Lu, J.; Shen, R.; Zhang, K. Nanostructured energetic composites: Synthesis, ignition/combustion modeling, and applications. ACS Appl. Mater. Interfaces 2014, 6, 3058–3074. [Google Scholar] [CrossRef]
- He, W.; Liu, P.-J.; He, G.-Q.; Gozin, M.; Yan, Q.-L. Highly Reactive Metastable Intermixed Composites (MICs): Preparation and Characterization. Adv. Mater. 2018, 30, e1706293. [Google Scholar] [CrossRef]
- Ma, X.; Li, Y.; Hussain, I.; Shen, R.; Yang, G.; Zhang, K. Core-Shell Structured Nanoenergetic Materials: Preparation and Fundamental Properties. Adv. Mater. 2020, 32, e2001291. [Google Scholar] [CrossRef]
- Irvin, G.; Yetter, R.A. Combustion, 4th ed.; Academic Press: San Diego, CA, USA, 2008. [Google Scholar]
- Law, C.K. A Simplified Theoretical Model for the Vapor-Phase Combustion of Metal Particles. Combust. Sci. Technol. 1973, 7, 197–212. [Google Scholar] [CrossRef]
- Brooks, K.P.; Beckstead, M.W. Dynamics of aluminum combustion. J. Propuls. Power 1995, 11, 769–780. [Google Scholar] [CrossRef]
- Lynch, P.; Krier, H.; Glumac, N. A correlation for burn time of aluminum particles in the transition regime. Proc. Combust. Inst. 2009, 32, 1887–1893. [Google Scholar] [CrossRef]
- Lynch, P.; Fiore, G.; Krier, H.; Glumac, N. Gas-Phase Reaction in Nanoaluminum Combustion. Combust. Sci. Technol. 2010, 182, 842–857. [Google Scholar] [CrossRef]
- Tappan, B.C.; Dirmyer, M.R.; Risha, G.A. Evidence of a kinetic isotope effect in nanoaluminum and water combustion. Angew. Chem. Int. Ed. Engl. 2014, 53, 9218–9221. [Google Scholar] [CrossRef]
- Ji, Y.; Sun, Y.; Zhu, B.; Liu, J.; Wu, Y. Calcium fluoride promoting the combustion of aluminum powder. Energy 2022, 250, 123772. [Google Scholar] [CrossRef]
- Aumann, C.E.; Skofronick, G.L.; Martin, J.A. Oxidation behavior of aluminum nanopowders. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 1995, 13. [Google Scholar] [CrossRef]
- Zaky, M.; Elbeih, A.; Elshenawy, T. Review of Nano-thermites; a Pathway to Enhanced Energetic Materials. Cent. Eur. J. Energetic Mater. 2021, 18, 63–85. [Google Scholar] [CrossRef]
- Glavier, L.; Taton, G.; Ducéré, J.-M.; Baijot, V.; Pinon, S.; Calais, T.; Estève, A.; Djafari Rouhani, M.; Rossi, C. Nanoenergetics as pressure generator for nontoxic impact primers: Comparison of Al/Bi2O3, Al/CuO, Al/MoO3 nanothermites and Al/PTFE. Combust. Flame 2015, 162, 1813–1820. [Google Scholar] [CrossRef]
- Lebedev, E.A.; Sorokina, L.I.; Trifonov, A.Y.; Ryazanov, R.M.; Pereverzeva, S.Y.; Gavrilov, S.A.; Gromov, D.G. Influence of Composition on Energetic Properties of Copper Oxide—Aluminum Powder Nanothermite Materials Formed by Electrophoretic Deposition. Propellants Explos. Pyrotech. 2021, 47, e202100292. [Google Scholar] [CrossRef]
- Jiang, A.; Xia, D.; Li, M.; Qiang, L.; Fan, R.; Lin, K.; Yang, Y. Ball Milling Produced FeF3-Containing Nanothermites: Investigations of Its Thermal and Inflaming Properties. ChemistrySelect 2019, 4, 12662–12667. [Google Scholar] [CrossRef]
- Wang, N.; Hu, Y.; Ke, X.; Xiao, L.; Zhou, X.; Peng, S.; Hao, G.; Jiang, W. Enhanced-absorption template method for preparation of double-shell NiO hollow nanospheres with controllable particle size for nanothermite application. Chem. Eng. J. 2020, 379, 122330. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, W.; Shen, R.; Xu, X.; Cheng, J.; Ye, J.; Qin, Z.; Chao, Y. 3D ordered macroporous NiO/Al nanothermite film with significantly improved higher heat output, lower ignition temperature and less gas production. Mater. Des. 2016, 110, 304–310. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Li, Z.-H.; Chen, S.; Yang, G.; Yang, Z.; Liu, P.-J.; Yan, Q.-L. Energetic metastable n-Al@PVDF/EMOF composite nanofibers with improved combustion performances. Chem. Eng. J. 2020, 383, 123146. [Google Scholar] [CrossRef]
- Lee Perry, W.; Tappan, B.C.; Reardon, B.L.; Sanders, V.E.; Son, S.F. Energy release characteristics of the nanoscale aluminum-tungsten oxide hydrate metastable intermolecular composite. J. Appl. Phys. 2007, 101, 064313. [Google Scholar] [CrossRef] [Green Version]
- Fahd, A.; Dubois, C.; Chaouki, J.; Wen, J.Z. Combustion behaviour and reaction kinetics of GO/Al/oxidizing salts ternary nanothermites. J. Therm. Anal. Calorim. 2022, 1–13. [Google Scholar] [CrossRef]
- Liu, Q.; Li, X.; Bai, C. Deflagration to detonation transition in aluminum dust–air mixture under weak ignition condition. Combust. Flame 2009, 156, 914–921. [Google Scholar] [CrossRef]
- Antipina, S.A.; Zmanovskii, S.V.; Gromov, A.A.; Teipel, U. Air and water oxidation of aluminum flake particles. Powder Technol. 2017, 307, 184–189. [Google Scholar] [CrossRef]
- Houim, R.W.; Boyd, E. Combustion of aluminum flakes in the post-flame zone of a hencken burner. Int. J. Energetic Mater. Chem. Propuls. 2008, 7, 55–71. [Google Scholar] [CrossRef]
- Wang, D.Q.; Yu, H.M.; Liu, J.; Li, F.S.; Jin, X.X.; Zheng, S.J.; Zheng, T.T.; Li, Y.; Zhang, Z.J.; Li, D.; et al. Preparation and Properties of a Flake Aluminum Powder in an Ammonium-Perchlorate-Based Composite Modified Double-Base Propellant. Combust. Explos. Shock. Waves 2020, 56, 691–696. [Google Scholar] [CrossRef]
- Kuhl, A.L.; Reichenbach, H. Combustion effects in confined explosions. Proc. Combust. Inst. 2009, 32, 2291–2298. [Google Scholar] [CrossRef] [Green Version]
- Kotov, Y.A. Electric Explosion of Wires as a Method for Preparation of Nanopowders. J. Nanoparticle Res. 2003, 5, 539–550. [Google Scholar] [CrossRef]
- Lerner, M.; Vorozhtsov, A.; Guseinov, S.; Storozhenko, P. Metal Nanopowders Production. Met. Nanopowders 2014, 79–106. [Google Scholar] [CrossRef]
- DeLuca, L.; Galfetti, L. Burning of Metalized Composite Solid Rocket Propellants: From Micrometric to Nanometric Aluminum Size. In Proceedings of the Asian Joint Conference on Propulsion and Power, Gyeongju, Korea, 6–8 March 2008; pp. 6–8. [Google Scholar]
- Trubert, J.-F.; Hommel, J.; Lambert, D.; Fabignon, Y.; Orlandi, O. New HTPB/AP/Al propellant combustion process in the presence of aluminum nano-particles. Int. J. Energetic Mater. Chem. Propuls. 2008, 7, 99–122. [Google Scholar] [CrossRef]
- Tang, D.-Y.; Lyu, J.; He, W.; Chen, J.; Yang, G.; Liu, P.-J.; Yan, Q.-L. Metastable intermixed Core-shell Al@M(IO3)x nanocomposites with improved combustion efficiency by using tannic acid as a functional interfacial layer. Chem. Eng. J. 2020, 384, 123369. [Google Scholar] [CrossRef]
- Lerner, M.; Vorozhtsov, A.; Eisenreich, N. Safety Aspects of Metal Nanopowders. Met. Nanopowders 2014, 153–162. [Google Scholar] [CrossRef]
- Jacob, R.J.; Jian, G.; Guerieri, P.M.; Zachariah, M.R. Energy release pathways in nanothermites follow through the condensed state. Combust. Flame 2015, 162, 258–264. [Google Scholar] [CrossRef]
- Osborne, D.T.; Pantoya, M.L. Effect of Al Particle Size on the Thermal Degradation of Al/Teflon Mixtures. Combust. Sci. Technol. 2007, 179, 1467–1480. [Google Scholar] [CrossRef]
- DeLisio, J.B.; Hu, X.; Wu, T.; Egan, G.C.; Young, G.; Zachariah, M.R. Probing the Reaction Mechanism of Aluminum/Poly(vinylidene fluoride) Composites. J. Phys. Chem. B 2016, 120, 5534–5542. [Google Scholar] [CrossRef]
- Valluri, S.K.; Bushiri, D.; Schoenitz, M.; Dreizin, E. Fuel-rich aluminum–nickel fluoride reactive composites. Combust. Flame 2019, 210, 439–453. [Google Scholar] [CrossRef]
- McCollum, J.; Pantoya, M.L.; Iacono, S.T. Catalyzing aluminum particle reactivity with a fluorine oligomer surface coating for energy generating applications. J. Fluor. Chem. 2015, 180, 265–271. [Google Scholar] [CrossRef]
- Kim, D.W.; Kim, K.T.; Min, T.S.; Kim, K.J.; Kim, S.H. Improved Energetic-Behaviors of Spontaneously Surface-Mediated Al Particles. Sci. Rep. 2017, 7, 4659. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zeng, C.; Zhan, C.; Zhang, L. Tuning the reactivity and combustion characteristics of PTFE/Al through carbon nanotubes and grapheme. Thermochim. Acta 2019, 676, 276–281. [Google Scholar] [CrossRef]
- Ke, X.; Guo, S.; Zhang, G.; Zhou, X.; Xiao, L.; Hao, G.; Wang, N.; Jiang, W. Safe preparation, energetic performance and reaction mechanism of corrosion-resistant Al/PVDF nanocomposite films. J. Mater. Chem. A 2018, 6, 17713–17723. [Google Scholar] [CrossRef]
- Meir, S.; Kalabukhov, S.; Hayun, S. Low temperature spark plasma sintering of Al2O3–TiC composites. Ceram. Int. 2014, 40, 12187–12192. [Google Scholar] [CrossRef]
- Cai, K.F.; McLachlan, D.S.; Axen, N.; Manyatsa, R. Preparation, microstructures and properties of Al2O3–TiC composites. Ceram. Int. 2002, 28, 217–222. [Google Scholar] [CrossRef]
- Cheng, Y.; Sun, S.; Hu, H. Preparation of Al2O3/TiC micro-composite ceramic tool materials by microwave sintering and their microstructure and properties. Ceram. Int. 2014, 40, 16761–16766. [Google Scholar] [CrossRef]
- Noor, F.; Vorozhtsov, A.; Lerner, M.; Bandarra Filho, E.P.; Wen, D. Thermal-Chemical Characteristics of Al–Cu Alloy Nanoparticles. J. Phys. Chem. C 2015, 119, 14001–14009. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Qiao, Z.; Zhang, K.; Wang, J.; Li, R.; Xu, H.; Yang, G.; Nie, F. Effects of nano-Ag on the combustion process of Al–CuO metastable intermolecular composite. Appl. Therm. Eng. 2014, 62, 732–737. [Google Scholar] [CrossRef]
- McCollum, J.; Pantoya, M.L.; Iacono, S.T. Activating Aluminum Reactivity with Fluoropolymer Coatings for Improved Energetic Composite Combustion. ACS Appl. Mater. Interfaces 2015, 7, 18742–18749. [Google Scholar] [CrossRef]
Sample | Heat Release J/g | Delay Time μs | Burning Rate m/s | Pressurization Rate kPa/μs |
---|---|---|---|---|
Al/Bi2O3 | 1541 | 5 | 420 | 5762 |
Al/CuO | 1057 | 15 | 340 | 172 |
Al/MoO3 | 1883 | 110 | 100 | 35 |
Sample | Linear Burning Rate m/s | Mass Burning Rate kg/s | Pressurization Rate MPa/μs |
---|---|---|---|
Nano Al/nano CuO | 980 | 3.8 | 0.67 |
Micron Al/nano CuO | 660 | 4.8 | 1.82 |
Nano Al/micron CuO | 200 | 1.3 | 0.28 |
Micron Al/micron CuO | 180 | 2.0 | 0.11 |
Nano Al/nano MoO3 | 680 | 2.0 | 0.68 |
Micron Al/nano MoO3 | 360 | 1.5 | 0.44 |
Nano Al/micron MoO3 | 150 | 0.45 | 0.20 |
Micron Al/micron MoO3 | 47 | 0.52 | 0.17 |
Sample | PIR Onset Temperature °C | PIR Heat Release J/g | Thermite Reaction Onset Temperature °C | Thermite Heat Release J/g |
---|---|---|---|---|
Al@PFPE | 315 | 19.80 | 561 | 133 |
Al/MoO3 | - | - | 508 | 2078 |
Al/MoO3@5%PFPE | 298 | 21.79 | 534 | 1370 |
Al/MoO3@10%PFPE | 301 | 35.17 | 541 | 1672 |
Al/MoO3@20%PFPE | 305 | 103.1 | 566 | 1889 |
Al/CuO | - | - | 517 | 763 |
Al/CuO@PFPE | 298 | 19.56 | 569 | 1658 |
Al/CuO@10%PFPE | 299 | 29.70 | 581 | 1305 |
Al/CuO@20%PFPE | 303 | 51.37 | 583 | 843 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Xu, G.; Tan, T.; Liu, S.; Dong, W.; Li, F.; Liu, J. The Oxidation Process and Methods for Improving Reactivity of Al. Crystals 2022, 12, 1187. https://doi.org/10.3390/cryst12091187
Wang D, Xu G, Tan T, Liu S, Dong W, Li F, Liu J. The Oxidation Process and Methods for Improving Reactivity of Al. Crystals. 2022; 12(9):1187. https://doi.org/10.3390/cryst12091187
Chicago/Turabian StyleWang, Deqi, Guozhen Xu, Tianyu Tan, Shishuo Liu, Wei Dong, Fengsheng Li, and Jie Liu. 2022. "The Oxidation Process and Methods for Improving Reactivity of Al" Crystals 12, no. 9: 1187. https://doi.org/10.3390/cryst12091187
APA StyleWang, D., Xu, G., Tan, T., Liu, S., Dong, W., Li, F., & Liu, J. (2022). The Oxidation Process and Methods for Improving Reactivity of Al. Crystals, 12(9), 1187. https://doi.org/10.3390/cryst12091187