Wideband Collinear Phase Matching in Cubic Semiconductors via the Linear Electro-Optic Effect: A Theoretical Study
Abstract
:1. Introduction
2. Theoretical Methods
2.1. Collinear Phase Matching in ZnTe and CdTe
2.2. Electro-Optic Phase Matching: Basic Concept
3. Results and Discussion
3.1. Widely Tunable Collinear Phase-Matched Monochromatic Terahertz Generation Via the Electro-optic Effect
3.2. Simultaneous Wideband Terahertz Generation Via OR Modulated by the Electro-Optic Effect
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nahata, A.; Weling, A.S.; Heinz, T.F. A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling. Appl. Phys. Lett. 1996, 69, 2321–2323. [Google Scholar] [CrossRef] [Green Version]
- Tanabe, T.; Suto, K.; Nishizawa, J.; Saito, K.; Kimura, T. Tunable terahertz wave generation in the 3- to 7-THz region from GaP. Appl. Phys. Lett. 2003, 83, 237–239. [Google Scholar] [CrossRef]
- Chang, G.Q.; Divin, C.J.; Liu, C.H.; Williamson, S.L.; Galvanauskas, A.; Norris, T.B. Power scalable compact THz system based on an ultrafast Yb-doped fiber amplifier. Opt. Express 2006, 14, 7909–7913. [Google Scholar] [CrossRef] [PubMed]
- Bonvalet, A.; Joffre, M.; Martin, J.L.; Migus, A. Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate. Appl. Phys. Lett. 1995, 67, 2907–2909. [Google Scholar] [CrossRef]
- Zhong, K.; Shi, W.; Xu, D.G.; Liu, P.X.; Wang, Y.Y.; Mei, J.L.; Yan, C.; Fu, S.J.; Yao, J.Q. Optically pumped terahertz sources. Sci China Technol. Sci. 2017, 60, 1801–1818. [Google Scholar] [CrossRef]
- Powers, P.E.; Haus, J.W. Fundamentals of Nonlinear Optics; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Aggarwal, R.L.; Lax, B.; Favrot, G. Noncollinear phase matching in GaAs. Appl. Phys. Lett. 1973, 22, 329–330. [Google Scholar] [CrossRef]
- Nishizawa, J.; Tanabe, T.; Suto, K.; Watanabe, Y.; Sasaki, T.; Oyama, Y. Continuous-wave frequency-tunable terahertz-wave generation from GaP. IEEE Photon. Technol Lett. 2006, 18, 2008–2010. [Google Scholar] [CrossRef]
- Tochitsky, S.Y.; Sung, C.; Trubnick, S.E.; Chan, J.; Vodopyanov, K.L. High-power tunable, 0.5–3 THz radiation source based on nonlinear difference frequency mixing of CO2 laser lines. J. Opt. Soc. Am. B 2007, 24, 2509–2516. [Google Scholar] [CrossRef]
- Li, F.J.; Zhong, K.; Qiao, H.Z.; Liu, K.F.; Zhang, X.Z.; Xu, D.G.; Yao, J.Q. Efficient tunable terahertz generation via noncollinear phase matching in the ZnGeP2 crystal. J. Opt. Soc. Am. B 2020, 37, 3857–3864. [Google Scholar] [CrossRef]
- Petersen, E.B.; Shi, W.; Chavez-Pirson, A.; Peyghambarian, N.; Cooney, A.T. Efficient parametric terahertz generation in quasi-phase-matched GaP through cavity enhanced difference-frequency generation. Appl. Phys. Lett. 2011, 98, 121119. [Google Scholar] [CrossRef]
- Vodopyanov, K.L.; Fejer, M.M.; Yu, X.; Harris, J.S.; Lee, Y.-S.; Hurlbut, W.C.; Kozlov, V.G.; Bliss, D.; Lynch, C. Terahertz-wave generation in quasi-phase-matched GaAs. Appl. Phys. Lett. 2006, 89, 141119. [Google Scholar] [CrossRef] [Green Version]
- Kuo, P.S.; Vodopyanov, K.L.; Fejer, M.M.; Simanovskii, D.M.; Yu, X.; Harris, J.S.; Bliss, D.; Weyburne, D. Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs. Opt. Lett. 2006, 31, 71–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mei, J.; Zhong, K.; Wang, M.; Liu, P.; Xu, D.; Wang, Y.; Shi, W.; Yao, J. High-repetition-rate terahertz generation in QPM GaAs with a compact efficient 2-μm KTP OPO. IEEE Photonics Technol. Lett. 2016, 28, 1501–1504. [Google Scholar] [CrossRef]
- Lee, K.F.; Hensley, C.J.; Schunemann, P.G.; Fermann, M.E. Broadly tunable difference frequency generation in orientation-patterned gallium phosphide. In Proceedings of the High-Brightness Sources and Light-Driven Interactions, Long Beach, CA, USA, 20–22 March 2016. [Google Scholar]
- Cui, Z.J.; Liu, D.; Miao, J.; Yang, A.H.; Zhu, J.Q. Phase matching using the linear electro-optic effect. Phys. Rev. Lett. 2017, 118, 043901. [Google Scholar] [CrossRef]
- Li, D.; Ma, G.H. Pump-wavelength dependence of terahertz radiation via optical rectification in (110)-oriented ZnTe crystal. J. Appl. Phys. 2008, 103, 123101. [Google Scholar] [CrossRef]
- Xie, X.; Xu, J.Z.; Zhang, X.-C. Terahertz wave generation and detection from a CdTe crystal characterized by different excitation wavelengths. Opt. Lett. 2006, 31, 978–980. [Google Scholar] [CrossRef]
- Schall, M.; Walther, M.; Jepsen, P.U. Fundamental and second-order phonon processes in CdTe and ZnTe. Phys. Rev. B 2001, 64, 094301. [Google Scholar] [CrossRef]
- Marple, D.T.F. Refractive index of ZnSe, ZnTe, and CdTe. J. Appl. Phys. 1964, 35, 539–542. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, X.C. Ultrafast electro-optic field sensors. Appl. Phys. Lett. 1996, 68, 1604–1606. [Google Scholar] [CrossRef]
- Hebling, J.; Stepanov, A.G.; Almási, G.; Bartal, B.; Kuhl, J. Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts. Appl. Phys. B 2004, 78, 593–599. [Google Scholar] [CrossRef]
- Tomasino, A.; Parisi, A.; Stivala, S.; Livreri, P.; Cino, A.C.; Busacca, A.C.; Peccianti, M.; Morandotti, R. Wideband THz time domain spectroscopy based on optical rectification and electro-optic sampling. Sci. Rep. 2013, 3, 3116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, J.; Efimov, A.V.; Averitt, R.D.; Taylor, A.J. Terahertz waveform synthesis via optical rectification of shaped ultrafast laser pulses. Opt. Express 2003, 11, 2486–2496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, M.; Higuchi, T.; Kanda, N.; Konishi, K.; Yoshioka, K.; Suzuki, T.; Misawa, K.; Kuwata-Gonokami, M. Terahertz polarization pulse shaping with arbitrary field control. Nat. Photonics 2013, 7, 724–731. [Google Scholar] [CrossRef]
- Sanjuan, F.; Gaborit, G.; Coutaz, J.-L. Full electro-optic terahertz time-domain spectrometer for polarimetric studies. Appl. Opt. 2018, 57, 6055–6060. [Google Scholar] [CrossRef]
- Hatem, O. Peak emission of terahertz waves from (110)-oriented ZnTe by interacting phase-matched phonon resonances. J. Opt. Soc. Am. B 2019, 36, 1144–1149. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, K.; Li, F.; Qiao, H.; Zhang, X.; Xu, D.; Yao, J. Wideband Collinear Phase Matching in Cubic Semiconductors via the Linear Electro-Optic Effect: A Theoretical Study. Crystals 2022, 12, 764. https://doi.org/10.3390/cryst12060764
Zhong K, Li F, Qiao H, Zhang X, Xu D, Yao J. Wideband Collinear Phase Matching in Cubic Semiconductors via the Linear Electro-Optic Effect: A Theoretical Study. Crystals. 2022; 12(6):764. https://doi.org/10.3390/cryst12060764
Chicago/Turabian StyleZhong, Kai, Fangjie Li, Hongzhan Qiao, Xianzhong Zhang, Degang Xu, and Jianquan Yao. 2022. "Wideband Collinear Phase Matching in Cubic Semiconductors via the Linear Electro-Optic Effect: A Theoretical Study" Crystals 12, no. 6: 764. https://doi.org/10.3390/cryst12060764
APA StyleZhong, K., Li, F., Qiao, H., Zhang, X., Xu, D., & Yao, J. (2022). Wideband Collinear Phase Matching in Cubic Semiconductors via the Linear Electro-Optic Effect: A Theoretical Study. Crystals, 12(6), 764. https://doi.org/10.3390/cryst12060764