Hydrogen Embrittlement Behavior of Plastically Pre-Strained and Cathodically Hydrogen-Charged 316H Grade Austenitic Stainless Steel
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure and Phase Analysis of As-Received Material
3.2. Effect of Hydrogen Charging on Mechanical Properties
3.3. Hydrogen Embrittlement Evaluation
4. Conclusions
- The performed XRD and EBSD phase analyses indicated a fully austenitic, i.e., FCC, crystal structure of the studied material in its as-received solution-annealed material condition. The EBSD microstructural analysis revealed that the single-phase microstructure was mainly formed of randomly distributed polygonal grains showing the occasional occurrence of annealing twins.
- For the initial (as-received) material condition, i.e., without the application of plastic pre-strain, a slight increase in strength properties and a certain observable decrease in deformation properties were observed for cathodically hydrogen-charged specimens, compared to the nonhydrogenated ones.
- According to the calculated embrittlement indices, the overall embrittlement of the studied material due to hydrogen was found to be small. This behavior has been ascribed to the high storage of plasticity of the studied material due to its FCC crystal structure and also to its beneficial diffusional characteristics.
- No strain-induced or hydrogen-induced phase transformations were observed in plastically pre-strained and hydrogen-charged material states. With the increasing level of plastic pre-strain up to 38%, a clear decrease in average deformation properties of hydrogen-charged materials was observed. This behavior has been attributed to the strain-induced microstructural changes, specifically the formation of slip dislocations and deformation twins serving as the newly formed hydrogen diffusion paths.
- It has been revealed that the observed degradation of deformation properties of the pre-strained and hydrogen-charged materials was predominantly caused by gradual plasticity exhaustion due to tensile straining, which agreed well with the performed EBSD analyses and micro/nano-hardness measurements.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miller, B.D.; Webb, T.W. Understanding the effect of crack tip deformation on fatigue crack growth behavior in 300-series austenitic stainless steel. Int. J. Fatigue 2019, 125, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Park, W.S.; Yoo, S.W.; Kim, M.H.; Lee, J.M. Strain-rate effects on the mechanical behavior of the AISI 300 series of austenitic stainless steel under cryogenic environments. Mater. Des. 2010, 31, 3630–3640. [Google Scholar] [CrossRef]
- Sudesh, T.L.; Wijesinghe, L.; Blackwood, D.J. Characterisation of passive films on 300 series stainless steels. App. Surf. Sci. 2006, 253, 1006–1009. [Google Scholar] [CrossRef]
- Yasa, E.; Karasoglu, M. Effect of thickness and build direction on the mechanical behavior and microstructure of AISI 316L stainless steel produced by Laser Beam Powder Bed Fusion. Kov. Mater. 2022, 60, 55–65. [Google Scholar] [CrossRef]
- Dziubińska, A.; Surdacki, P.; Winiarski, G.; Bulzak, T.; Majerski, K.; Piasta, M. Analysis of the New Forming Process of Medical Screws with a Cylindrical Head of 316 LVM Steel. Materials 2021, 14, 710. [Google Scholar] [CrossRef] [PubMed]
- El-Tahawy, M.; Jenei, P.; Kolonits, T.; Han, G.; Park, H.; Choe, H.; Gubicza, J. Different Evolutions of the Microstructure, Texture, and Mechanical Performance During Tension and Compression of 316L Stainless Steel. Metall. Mat. Trans. A 2020, 51, 3447–3460. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, Z.; Brisset, F.; Baudin, T.; Helbert, A.L.; Retraint, D. In-situ EBSD investigation of thermal stability of a 316L stainless steel nanocrystallized by Surface Mechanical Attrition Treatment. Mater. Lett. 2020, 263, 127249. [Google Scholar] [CrossRef]
- Ostovan, F.; Shafiei, E.; Toozandehjani, M.; Mohamed, I.F.; Soltani, M. On the role of molybdenum on the microstructural, mechanical and corrosion properties of the GTAW AISI 316 stainless steel welds. J. Mater. Res. Technol. 2021, 13, 2115–2125. [Google Scholar] [CrossRef]
- Whittaker, M.T.; Evans, M.; Wilshire, B. Long-term creep data prediction for type 316H stainless steel. Mater. Sci. Eng. A 2012, 552, 145–150. [Google Scholar] [CrossRef] [Green Version]
- Warren, A.D.; Griffiths, I.J.; Flewitt, P.E.J. Precipitation within localised chromium-enriched regions in a Type 316H austenitic stainless steel. J. Mater. Sci. 2018, 53, 6183–6197. [Google Scholar] [CrossRef] [PubMed]
- Githinji, D.N.; Northover, S.M.; Bouchard, P.J.; Rist, M.A. An EBSD Study of the Deformation of Service-Aged 316 Austenitic Steel. Metall. Mater. Trans. A 2013, 44, 4150–4167. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Green, G.; Hogg, S.; Higginson, R.; Cocks, A. Effect of microstructure evolution on the creep properties of a polycrystalline 316H austenitic stainless steel. Mater. Sci. Eng. A 2020, 772, 138787. [Google Scholar] [CrossRef]
- Zhou, H.; Mehmanparast, A.; Nikbin, K. Determination of Long-Term Creep Properties for 316H Steel Using Short-Term Tests on Pre-strained Material. Exp. Tech. 2021, 45, 549–560. [Google Scholar] [CrossRef]
- Bystrianský, V.; Krausová, A.; Macák, J.; Děd, J.; Eltai, E.; Hamouda, A.M. Beneficial effect of shot peening on steamside oxidation of 300-series austenitic steels: An electrochemical study. App. Surf. Sci. 2018, 427, 680–685. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Spindler, M.W.; Truman, C.E.; Smith, D.J. Critical analysis of the prediction of stress relaxation from forward creep of Type 316H austenitic stainless steel. Mater. Des. 2016, 95, 656–668. [Google Scholar] [CrossRef]
- Barnard, P. 4—Austenitic Steel Grades for Boilers in Ultra-Supercritical Power Plants. In Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants; Elsevier: Amsterdam, The Netherlands, 2017; pp. 99–119. [Google Scholar] [CrossRef]
- Warren, A.D.; Griffiths, I.J.; Harniman, R.L.; Flewitt, P.E.J.; Scott, T.B. The role of ferrite in Type 316H austenitic stainless steels on the susceptibility to creep cavitation. Mater. Sci. Eng. A 2015, 635, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Ubeda, A.I.; Griffiths, I.; Karunaratne, M.S.A.; Flewitt, P.E.J.; Younes, C.; Scott, T. Influence of nominal composition variation on phase evolution and creep life of Type 316H austenitic stainless steel components. Procedia Struct. Integr. 2016, 2, 958–965. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Shang, H.; Fernández-Caballero, A.; Warren, A.D.; Knowles, D.M.; Flewitt, P.E.J.; Martin, T.L. The role of grain boundary ferrite evolution and thermal aging on creep cavitation of type 316H austenitic stainless steel. Mater. Sci. Eng. A 2021, 807, 140859. [Google Scholar] [CrossRef]
- Blach, J.; Falat, L.; Ševc, P. The influence of hydrogen charging on the notch tensile properties and fracture behavior of dissimilar weld joints of advanced Cr-Mo-V and Cr-Ni-Mo creep-resistant steels. Eng. Fail. Anal. 2011, 18, 485–491. [Google Scholar] [CrossRef]
- Falat, L.; Svoboda, M.; Vyrostková, A.; Petryshynets, I.; Sopko, M. Microstructure and creep characteristics of dissimilar T91/TP316H martensitic/austenitic welded joint with Ni-based weld metal. Mater. Charact. 2012, 72, 15–23. [Google Scholar] [CrossRef]
- Falat, L.; Homolová, V.; Kepič, J.; Svoboda, M.; Výrostková, A. Microstructure and properties degradation of P/T 91, 92 steels weldments in creep conditions. J. Min. Metall. Sect. B Metall. 2012, 48, 461–469. [Google Scholar] [CrossRef]
- Blach, J.; Falat, L. The influence of thermal exposure and hydrogen charging on the notch tensile properties and fracture behaviour of dissimilar T91/TP316H weldments. High Temp. Mater. Processes 2014, 33, 329–337. [Google Scholar] [CrossRef]
- Falat, L.; Čiripová, L.; Kepič, J.; Buršík, J.; Podstranská, I. Correlation between microstructure and creep performance of martensitic/austenitic transition weldment in dependence of its post-weld heat treatment. Eng. Fail. Anal. 2014, 40, 141–152. [Google Scholar] [CrossRef]
- Falat, L.; Kepič, J.; Čiripová, L.; Ševc, P.; Dlouhý, I. The effects of postweld heat treatment and isothermal aging on T92 steel heat-affected zone mechanical properties of T92/TP316H dissimilar weldments. J. Mat. Res. 2016, 31, 1532–1543. [Google Scholar] [CrossRef]
- Čiripová, L.; Falat, L.; Ševc, P.; Vojtko, M.; Džupon, M. Ageing effects on room temperature tensile properties and fracture behavior of quenched and tempered T92/TP316H dissimilar welded joints with Ni-based weld metal. Metals 2018, 8, 791. [Google Scholar] [CrossRef] [Green Version]
- Ševc, P.; Falat, L.; Čiripová, L.; Džupon, M.; Vojtko, M. The effects of electrochemical hydrogen charging on room-temperature tensile properties of T92/TP316H dissimilar weldments in quenched-and-tempered and thermally-aged conditions. Metals 2019, 9, 864. [Google Scholar] [CrossRef] [Green Version]
- Manimozhi, S.; Suresh, S.; Muthupandi, V. HAZ hydrogen cracking of 9Cr-0.5 Mo-1.7W steels. Int. J. Adv. Manuf. Technol. 2010, 51, 217–223. [Google Scholar] [CrossRef]
- Hadžipašić, A.B.; Malina, J.; Malina, M. The influence of microstructure on hydrogen diffusion and embrittlement of fine-grained high strength dual-phase steels. Kov. Mater. 2021, 59, 69–78. [Google Scholar] [CrossRef]
- Eliezer, D. The behavior of 316L stainless steel in hydrogen. J. Mater. Sci. 1984, 19, 1540–1547. [Google Scholar] [CrossRef]
- Herms, E.; Olive, J.M.; Puiggali, M. Hydrogen embrittlement of 316L type stainless steel. Mater. Sci. Eng. A 1999, 272, 279–283. [Google Scholar] [CrossRef]
- Lee, S.K.; Kim, H.S.; Noh, S.J. Hydrogen Permeability, Diffusivity, and Solubility of SUS 316L Stainless Steel in the Temperature Range 400 to 800 °C for Fusion Reactor Applications. J. Korean Phys. Soc. 2011, 59, 3019–3023. [Google Scholar] [CrossRef]
- Omura, T.; Nakamura, J. Hydrogen Embrittlement Properties of Stainless and Low Alloy Steels in High Pressure Gaseous Hydrogen Environment. ISIJ Int. 2012, 52, 234–239. [Google Scholar] [CrossRef] [Green Version]
- Ogata, T. Influence of high pressure hydrogen environment on tensile and fatigue properties of stainless steels at low temperatures. AIP Conf. Proc. 2012, 1435, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Michler, T.; Naumann, J.; Hock, M.; Berreth, K.; Balogh, M.P.; Sattler, E. Microstructural properties controlling hydrogen environment embrittlement of cold worked 316 type austenitic stainless steels. Mater. Sci. Eng. A 2015, 628, 252–261. [Google Scholar] [CrossRef]
- Bak, S.H.; Kim, S.S.; Lee, D.B. Effect of hydrogen on dislocation structure and strain-induced martensite transformation in 316L stainless steel. RSC Adv. 2017, 7, 27840–27845. [Google Scholar] [CrossRef] [Green Version]
- Nicho, K.; Yokoyama, K. Marked Degradation of Tensile Properties Induced by Plastic Deformation after Interactions between Strain-Induced Martensite Transformation and Hydrogen for Type 316L Stainless Steel. Metals 2020, 10, 928. [Google Scholar] [CrossRef]
- Khaleghifar, F.; Razeghi, K.; Heidarzadeh, A.; Mousavian, R.T. Effect of Hydrogen on the Tensile Behavior of Austenitic Stainless Steels 316L Produced by Laser-Powder Bed Fusion. Metals 2021, 11, 586. [Google Scholar] [CrossRef]
- Bertsch, K.M.; Nagao, A.; Rankouhi, B.; Kuehl, B.; Thoma, D.J. Hydrogen embrittlement of additively manufactured austenitic stainless steel 316 L. Corros. Sci. 2021, 192, 109790. [Google Scholar] [CrossRef]
- Nygren, K.E.; Nagao, A.; Wang, S.; Sofronis, P.; Robertson, I.M. Influence of internal hydrogen content on the evolved microstructure beneath fatigue striations in 316L austenitic stainless steel. Acta Mater. 2021, 213, 116957. [Google Scholar] [CrossRef]
- Murakami, Y.; Kanezaki, T.; Mine, Y.; Matsuoka, S. Hydrogen Embrittlement Mechanism in Fatigue of Austenitic Stainless Steels. Metal. Mater. Trans. A 2008, 39, 1327–1339. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Yan, T.; Zhang, W.; Zhang, H.; Zhao, L. Modeling the Hydrogen Redistribution at the Grain Boundary of Misoriented Bicrystals in Austenite Stainless Steel. Materials 2022, 15, 479. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Park, J.; Nahm, S.H.; Baek, U.B. An experimental study for qualifying hydrogen compatibility of austenitic stainless steel under low temperature. J. Mech. Sci. Technol. 2022, 36, 157–165. [Google Scholar] [CrossRef]
- Nguyen, L.T.H.; Hwang, J.-S.; Kim, M.-S.; Kim, J.-H.; Kim, S.-K.; Lee, J.-M. Charpy impact properties of hydrogen-exposed 316L sainless steel at ambient and cryogenic temperatures. Metals 2019, 9, 625. [Google Scholar] [CrossRef] [Green Version]
- Jia, H.; Zhang, X.; Xu, J.; Sun, Y.; Li, J. Effect of hydrogen content and strain rate on hydrogen-induced delay cracking for hot-stamped steel. Metals 2019, 9, 798. [Google Scholar] [CrossRef] [Green Version]
- Dunne, D.P.; Hejazi, D.; Saleh, A.A.; Haq, A.J.; Calka, A.; Pereloma, E.V. Investigation of the effect of electrolytic hydrogen charging of X70 steel: I. The effect of microstructure on hydrogen-induced cold cracking and blistering. Int. J. Hydrog. Energy 2016, 41, 12411–12423. [Google Scholar] [CrossRef]
- Yin, C.; Chen, J.; Ye, D.; Xu, Z.; Ge, J.; Zhou, H. Hydrogen concentration distribution in 2.25cr-1mo-0.25v steel under the electrochemical hydrogen charging and its influence on the mechanical properties. Materials 2020, 13, 2263. [Google Scholar] [CrossRef]
- ISO 6507–1:2018; Metallic materials—Vickers hardness test—Part 1: Test method. ISO: London, UK, 2018. Available online: https://www.iso.org/standard/64065.html (accessed on 26 September 2022).
- ISO 14577–1:2015; Metallic materials—Instrumented indentation test for hardness and materials parameters—Part 1: Test method. ISO: London, UK, 2015. Available online: https://www.iso.org/standard/56626.html (accessed on 26 September 2022).
- Krom, A.H.M.; Bakker, A. Hydrogen trapping models in steel. Metall. Mater. Trans. B 2000, 31, 1475–1482. [Google Scholar] [CrossRef]
- Gao, C.Y.; Zhang, L.C. A constitutive model for dynamic plasticity of FCC metals. Mater. Sci. Eng. A 2010, 527, 3138–3143. [Google Scholar] [CrossRef]
- Jo, M.; Koo, Y.M.; Lee, B.J.; Johansson, B.; Vitos, L.; Kwon, S.K. Theory for plasticity of face-centered cubic metals. Proc. Natl. Acad. Sci. USA 2014, 111, 6560–6565. [Google Scholar] [CrossRef] [PubMed]
- Völkl, J.; Alefeld, G. Diffusion of Hydrogen in Metals. In Hydrogen in Metals I; Topics in Applied Physics; Springer: Berlin/Heidelberg, Germany, 1978; Volume 28, pp. 321–348. [Google Scholar] [CrossRef]
- Feng, Z.; Li, X.; Song, X.; Gu, T.; Zhang, Y. Hydrogen Embrittlement of CoCrFeMnNi High-Entropy Alloy Compared with 304 and IN718 Alloys. Metals 2022, 12, 998. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, D.; Jin, X.; Zhang, L.; Du, X.; Li, B. Design of non-equiatomic medium-entropy alloys. Sci. Rep. 2018, 8, 1236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.-F.; Kan, Z.-W.; Yang, Y.; Wan, Y.-X.; Li, J.-X.; Huang, Z.-Y. Investigation of the effect of electrolytic hydrogen charging on tensile-ductility loss in different Al-added low density steels. Mater. Sci. Eng. A 2020, 795, 140027. [Google Scholar] [CrossRef]
- Gathimba, N.; Kitane, Y. Effect of surface roughness on tensile ductility of artificially corroded steel plates. J. Constr. Steel Res. 2021, 176, 106392. [Google Scholar] [CrossRef]
Material | C | Si | Mn | Cr | Mo | Ni | Fe |
---|---|---|---|---|---|---|---|
316H | 0.05 | 0.51 | 1.77 | 16.76 | 2.05 | 11.13 | Rest |
Row | 0 | X | EIRA (0, X) [%] | EIEL (0, X) [%] |
---|---|---|---|---|
1 | 0% pre-strain, nonhydrogenated | 0% pre-strain, hydrogen charged | 1.2 | 6.0 |
2 | 25% pre-strain, nonhydrogenated | 25% pre-strain, hydrogen charged | 1.5 | 9.0 |
3 | 38% pre-strain, nonhydrogenated | 38% pre-strain, hydrogen charged | 2.8 | 14.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falat, L.; Čiripová, L.; Petryshynets, I.; Milkovič, O.; Džupon, M.; Kovaľ, K. Hydrogen Embrittlement Behavior of Plastically Pre-Strained and Cathodically Hydrogen-Charged 316H Grade Austenitic Stainless Steel. Crystals 2022, 12, 1419. https://doi.org/10.3390/cryst12101419
Falat L, Čiripová L, Petryshynets I, Milkovič O, Džupon M, Kovaľ K. Hydrogen Embrittlement Behavior of Plastically Pre-Strained and Cathodically Hydrogen-Charged 316H Grade Austenitic Stainless Steel. Crystals. 2022; 12(10):1419. https://doi.org/10.3390/cryst12101419
Chicago/Turabian StyleFalat, Ladislav, Lucia Čiripová, Ivan Petryshynets, Ondrej Milkovič, Miroslav Džupon, and Karol Kovaľ. 2022. "Hydrogen Embrittlement Behavior of Plastically Pre-Strained and Cathodically Hydrogen-Charged 316H Grade Austenitic Stainless Steel" Crystals 12, no. 10: 1419. https://doi.org/10.3390/cryst12101419
APA StyleFalat, L., Čiripová, L., Petryshynets, I., Milkovič, O., Džupon, M., & Kovaľ, K. (2022). Hydrogen Embrittlement Behavior of Plastically Pre-Strained and Cathodically Hydrogen-Charged 316H Grade Austenitic Stainless Steel. Crystals, 12(10), 1419. https://doi.org/10.3390/cryst12101419