Biological Mineralization of Hydrophilic Intraocular Lenses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mineralization Experiments
2.1.1. Constant Composition Reactor (CCR)
2.1.2. Eye Chamber Simulating Reactor (ECSR)
2.2. Solids Characterization
3. Results
3.1. IOL Calcification in the CCR-Measurement of Kinetics
3.2. IOL Calcification in the ECSR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lerman, S. The ocular lens. In Radiant Energy in the Eye; Lerman, S., Ed.; Macmillan: New York, NY, USA, 1980; pp. 73–93. [Google Scholar]
- Apple, D.J.; Sims, J. Harold Ridley and the invention of the intraocular lens. Surv. Ophthalmol. 1996, 40, 279–292. [Google Scholar] [CrossRef]
- Suh, Y.; Oh, C.; Kim, H.M. Comparison of the long-term clinical results of hydrophilic and hydrophobic acrylic intraocular lenses. Korean J. Ophthalmol. 2005, 19, 29–33. [Google Scholar] [CrossRef] [Green Version]
- Jensen, M.K.; Crandall, A.S.; Mamalis, N.; Olson, R.J. Crystallization on intraocular lens surfaces associated with the use of Healon GV. Arch. Ophthalmol. 1994, 112, 1037–1042. [Google Scholar] [CrossRef] [PubMed]
- Ursell, P.G.; Spalton, D.J.; Pande, M.V.; Hollick, E.J.; Barman, S.; Boyce, J.; Tilling, K. Relationship between intraocular lens biomaterials and posterior capsule opacification. J. Cataract Refract. Surg. 1998, 24, 352–360. [Google Scholar] [CrossRef]
- Bompastor-Ramos, P.; Póvoa, J.; Lobo, C.; Rodriguez, A.E.; Alió, J.L.; Werner, L.; Murta, J.N. Late postoperative opacification of ahydrophilic-hydrophobic acrylic intraocular lens. J. Cataract Refract Surg. 2016, 42, 1324–1331. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Tang, R.; Nancollas, G.H. The potential calcification of octacalcium phosphate on intraocular lens surfaces. J. Biomed. Mater. Res. A 2004, 71, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Rezaei-Kanavi, M.; Javadi, M.A.; Mirbabaei-Ghafghazi, F. Intraocular lens calcification; A clinicopathologic report. J. Ophthalmic Vis. Res. 2009, 4, 122–124. [Google Scholar]
- Izak, A.; Werner, L.; Pandey, S.; Apple, D.J. Calcification of modern foldable hydrogel intraocular lens designs. Eye 2003, 17, 393–406. [Google Scholar] [CrossRef]
- Koutsoukos, P.G.; Amjad, Z.; Tomson, M.B.; Nancollas, G.H. Crystallization of calcium phosphates. A constant composition study. J. Amer. Che. Soc. 1980, 102, 1553–1557. [Google Scholar] [CrossRef]
- Dalas, E.; Kallitsis, J.; Koutsoukos, P.G. The growth of sparingly soluble salts on polymeric substrates. Colloids Surf. 1991, 53, 197–208. [Google Scholar] [CrossRef]
- Gurabardhi, M.; Häberle, H.; Aurich, H.; Werner, L.; Pham, D.T. Serial intraocular lens opacifications of different designs from the same manufacturer: Clinical and light microscopic results of 71 explant cases. J. Cataract Refract. Surg. 2018, 44, 1326–1332. [Google Scholar] [CrossRef]
- Nagul, E.A. The molybdenum blue reaction for the determination of orthophosphate revisited: Opening the black box. Anal. Chim. Acta 2015, 890, 60–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bates, R.G. Revised Standard Values for pH Measurements from 0 to 95 °C. J. Res. N Bur. Stan. A-Phys. Chem. 1962, 66A, 179–184. [Google Scholar] [CrossRef]
- Drimtzias, E.G.; Rokidi, S.G.; Gartaganis, S.P.; Koutsoukos, P.G. Experimental investigation on mechanism of hydrophilic acrylic intraocular lens calcification. Am. J. Ophthalmol. 2011, 152, 824–833.e1. [Google Scholar] [CrossRef]
- Kinsey, V.E. Comparative chemistry of aqueous humor in posterior and anterior chambers of rabbit eye. Its physiologic significance. A.M.A. Arch. Opthalm. 1953, 50, 401–417. [Google Scholar]
- Christoffersen, J.; Christoffersen, M.R.; Kibalczyc, W.; Andersen, F.A. A contribution to the understanding of the formation of calcium phosphates. J.Cryst. Growth 1989, 94, 767–777. [Google Scholar] [CrossRef]
- Ding, H.; Pan, H.; Xu, X.; Tang, R. Towards a Detailed Understanding of Magnesium ions on Hydrox-yapatite Crystallization Inhibition. Cryst. Growth Des. 2014, 14, 763–769. [Google Scholar] [CrossRef]
- Skartsila, K.; Spanos, N. Physicochemical characterization of variously packed porous plugs of hydroxyapatite: Streaming potential coupled with conductivity measurements. Langmuir 2006, 22, 1903–1910. [Google Scholar] [CrossRef]
- Spanos, N.; Misirlis, D.Y.; Kanellopoulou, D.G.; Koutsoukos, P.G. Seeded growth of hydroxyapatite in simulated body fluid. J Mater Sci. 2003, 41, 1805–1812. [Google Scholar] [CrossRef]
- Tao, J.H.; Fijneman, A.; Wan, J.Q.; Prajapati, S.; Mukherjee, K.; Fernandez-Martinez, A.; Moradian-Oldak, J.; De Yoreo, J.J. Control of calcium phosphate nucleation and transformation through interactions of enamelin and amelogenin exhibits the “goldilocks effect”. Cryst. Growth Des. 2018, 18, 7391–7400. [Google Scholar] [CrossRef]
- Fowler, B.O.; Markovic, M.; Brown, W.E. Octacalcium phosphate. 3. Infrared and Raman vibrational spectra. Chem. Mater. 1993, 5, 1417–1423. [Google Scholar] [CrossRef]
- De Yoreo, J.J.; Vekilov, P. Principles of crystal nucleation and growth. Rev. Mineral. Geochem. 2003, 54, 57–93. [Google Scholar] [CrossRef]
- Nielsen, A.E. Nucleation in aqueous solutions. In Crystal Growth; Peiser, S., Ed.; Pergamon: Oxford, UK, 1967; pp. 419–426. [Google Scholar]
- Ibarra-Montaño, E.L.; Rodríguez-Laguna, N.; Sánchez-Hernández, A.; Rojas-Hernández, A. Determination of pKa Values for Acrylic, Methacrylic and Itaconic Acids by 1H and 13C NMR in Deuterated Water. J. Appl. Sol. Chem. Model. 2015, 4, 7–18. [Google Scholar] [CrossRef] [Green Version]
- Gartaganis, S.P.; Kanellopoulou, D.G.; Mela, E.K.; Panteli, V.S.; Koutsoukos, P.G. Opacification of hydrophilic acrylic intraocular lens attributable to calcification: Investigation on mechanism. Am. J. Ophthalmol. 2008, 146, 395–403. [Google Scholar] [CrossRef]
- Gartaganis, S.P.; Prahs, P.; Lazari, E.D.; Gartaganis, P.S.; Helbig, H.; Koutsoukos, P.G. Calcification of Hydrophilic Acrylic Intraocular Lenses With a Hydrophobic Surface: Laboratory Analysis of 6 Cases. Am. J. Ophthalmol. 2016, 168, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Schrittenlocher, S.; Schaub, F.; Hos, D.; Siebelmann, S.; Cursiefen, C.; Bachmann, B. Evolution of Consecutive Descemet Membrane Endothelial Keratoplasty Outcomes Throughout a 5-Year Period Performed by Two Experienced Surgeons. Am. J. Ophthalmol. 2018, 190, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Belin, P.J.; Kim, J.H.; Sheikh, A.; Winokur, J.; Rhee, D.; Deramo, V. Incidence and Risk of Scleral-Fixated Akreos (AO60) Lens Opacification: A Case Series. J. Vitr. Retinal. Dis. 2021, 5, 157–162. [Google Scholar] [CrossRef]
- Fernández-Buenaga, R.; Alió, J.L. Intraocular Lens Explantation After Cataract Surgery: Indications, Results, and Explantation Techniques. Asia Pac. J. Ophthalmol. 2017, 6, 372–380. [Google Scholar] [CrossRef] [PubMed]
Component | Formula | Concentration/mM |
---|---|---|
Disodium hydrogen phosphate | Na2HPO4 | 0.6 |
Magnesium Chloride | MgCl2 | 1.0 |
Sodium bicarbonate | NaHCO3 | 33.6 |
Calcium Chloride | CaCl2 | 1.7 |
Potassium Chloride | KCl | 5.3 |
Sodium Chloride | NaCl | 150.0 |
Hydration/Storage Solution | Induction Time, tind (min) | Surface Energy, γs (mJ·m−2) | Precipitation Rate *, Rp /×10−4 molHAP·min−1·m−2 |
---|---|---|---|
Water | 37 | 39 | 4.70 |
PBS | 225 | 42 | 0.90 |
BBS | 360 | 50 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koutsoukos, P.G.; Natsi, P.D.; Gartaganis, S.P.; Gartaganis, P.S. Biological Mineralization of Hydrophilic Intraocular Lenses. Crystals 2022, 12, 1418. https://doi.org/10.3390/cryst12101418
Koutsoukos PG, Natsi PD, Gartaganis SP, Gartaganis PS. Biological Mineralization of Hydrophilic Intraocular Lenses. Crystals. 2022; 12(10):1418. https://doi.org/10.3390/cryst12101418
Chicago/Turabian StyleKoutsoukos, Petros G., Panagiota D. Natsi, Sotirios P. Gartaganis, and Panos S. Gartaganis. 2022. "Biological Mineralization of Hydrophilic Intraocular Lenses" Crystals 12, no. 10: 1418. https://doi.org/10.3390/cryst12101418
APA StyleKoutsoukos, P. G., Natsi, P. D., Gartaganis, S. P., & Gartaganis, P. S. (2022). Biological Mineralization of Hydrophilic Intraocular Lenses. Crystals, 12(10), 1418. https://doi.org/10.3390/cryst12101418