III–V Microwires with Reversed Ridge Waveguides Selectively Grown on Pre-Patterned Si Substrates
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. InP Microwires on Pre-Patterned Si Substrate
3.2. SCH–MQW Microwires on Pre-Patterned Si Substrates
3.3. Potential Analysis of the Microwires for Silicon Photonics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soref, R. The Past, Present, and Future of Silicon Photonics. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 1678–1687. [Google Scholar] [CrossRef]
- Liang, D.; Bowers, J.E. Recent progress in lasers on silicon. Nat. Photonics 2010, 4, 511–517. [Google Scholar] [CrossRef]
- Thomson, D.; Zilkie, A.; Bowers, J.E.; Komljenovic, T.; Reed, G.T.; Vivien, L.; Marris-Morini, D.; Cassan, E.; Virot, L.; Fédéli, J.-M.; et al. Roadmap on silicon photonics. J. Opt. 2016, 18, 073003–073023. [Google Scholar] [CrossRef]
- Pérez, D.; Gasulla, I.; Das Mahapatra, P.; Capmany, J. Principles, fundamentals, and applications of programmable integrated photonics. Adv. Opt. Photonics 2020, 12, 709–786. [Google Scholar] [CrossRef]
- Li, Y.; Yu, H.; Yang, W.; Ge, C.; Wang, P.; Meng, F.; Luo, G.; Wang, M.; Zhou, X.; Lu, D.; et al. 4–λ hybrid InGaAsP-Si evanescent laser array with low power consumption for on-chip optical interconnects. Photonics Res. 2019, 7, 687–692. [Google Scholar] [CrossRef]
- Shang, C.; Wan, Y.; Selvidge, J.; Hughes, E.; Herrick, R.; Mukherjee, K.; Duan, J.; Grillot, F.; Chow, W.W.; Bowers, J.E. Perspectives on Advances in Quantum Dot Lasers and Integration with Si Photonic Integrated Circuits. ACS Photonics 2021, 8, 2555–2566. [Google Scholar] [CrossRef]
- Han, Y.; Lau, K.M. III–V lasers selectively grown on (001) silicon. J. Appl. Phys 2020, 128, 200901. [Google Scholar] [CrossRef]
- Omanakuttan, G.; Sun, Y.-T.; Hedlund, C.R.; Junesand, C.; Schatz, R.; Lourdudoss, S.; Pillard, V.; Lelarge, F.; Browne, J.; Justice, J.; et al. Surface emitting 1.5 µm multi-quantum well LED on epitaxial lateral overgrowth InP/Si. Opt Mater Express 2020, 10, 1714–1723. [Google Scholar] [CrossRef]
- Yang, W.; Li, Y.; Meng, F.; Yu, H.; Wang, M.; Wang, P.; Luo, G.; Zhou, X.; Pan, J. III–V compound materials and lasers on silicon. J. Semicond 2019, 40, 101305. [Google Scholar] [CrossRef]
- Han, Y.; Ng, W.K.; Xue, Y.; Wong, K.S.; Lau, K.M. Room temperature III–V nanolasers with distributed Bragg reflectors epitaxially grown on (001) silicon-on-insulators. Photonics Res. 2019, 7, 1081–1086. [Google Scholar] [CrossRef]
- Kunert, B.; Mols, Y.; Baryshniskova, M.; Waldron, N.; Schulze, A.; Langer, R. How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? A critical review on current approaches. Semicond. Sci. Technol 2018, 33, 093002. [Google Scholar] [CrossRef]
- Mi, Z.; Yang, J.; Bhattacharya, P.; Huffaker, D.L. Self-organised quantum dots as dislocation filters: The case of GaAs-based lasers on silicon. Electron. Lett. 2006, 42, 121–123. [Google Scholar] [CrossRef]
- Chen, S.; Li, W.; Wu, J.; Jiang, Q.; Tang, M.; Shutts, S.; Elliott, S.N.; Sobiesierski, A.; Seeds, A.J.; Ross, I.; et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat. Photonics 2016, 10, 307–311. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, K.; Sun, Q.; Liu, J.P.; Feng, M.X.; Li, Z.C.; Zhou, Y.; Zhang, L.Q.; Li, D.Y.; Zhang, S.M.; et al. Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si. Nat. Photonics 2016, 10, 595–599. [Google Scholar] [CrossRef]
- Paladugu, M.; Merckling, C.; Loo, R.; Richard, O.; Bender, H.; Dekoster, J.; Vandervorst, W.; Caymax, M.; Heyns, M. Site Selective Integration of III–V Materials on Si for Nanoscale Logic and Photonic Devices. Cryst.Growth Des. 2012, 12, 4696–4702. [Google Scholar] [CrossRef]
- Baryshnikova, M.; Mols, Y.; Ishii, Y.; Alcotte, R.; Han, H.; Hantschel, T.; Richard, O.; Pantouvaki, M.; Van Campenhout, J.; Van Thourhout, D.; et al. Nano-Ridge Engineering of GaSb for the Integration of InAs/GaSb Heterostructures on 300 mm (001) Si. Crystals 2020, 10, 330. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Han, Y.; Lau, K.M. InAs nano-ridges and thin films grown on (001) silicon substrates. J. Appl. Phys 2020, 128, 035302. [Google Scholar] [CrossRef]
- Li, S.; Zhou, X.; Li, M.; Kong, X.; Mi, J.; Wang, M.; Wang, W.; Pan, J. Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate. Appl. Phys. Lett. 2016, 108, 021902. [Google Scholar] [CrossRef]
- Bogumilowicz, Y.; Hartmann, J.M.; Rochat, N.; Salaun, A.; Martin, M.; Bassani, F.; Baron, T.; David, S.; Bao, X.Y.; Sanchez, E. Threading dislocations in GaAs epitaxial layers on various thickness Ge buffers on 300 mm Si substrates. J. Cryst. Growth 2016, 453, 180–187. [Google Scholar] [CrossRef]
- Han, Y.; Ng, W.K.; Xue, Y.; Li, Q.; Wong, K.S.; Lau, K.M. Telecom InP/InGaAs nanolaser array directly grown on (001) silicon-on-insulator. Opt. Lett. 2019, 44, 767–770. [Google Scholar] [CrossRef]
- Wang, Z.C.; Tian, B.; Pantouvaki, M.; Guo, W.M.; Absil, P.; Van Campenhout, J.; Merckling, C.; Van Thourhout, D. Room-temperature InP distributed feedback laser array directly grown on silicon. Nat. Photonics 2015, 9, 837–842. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Xue, Y.; Lin, L.; Xing, Z.; Wong, K.S.; Lau, K.M. Telecom InGaAs/InP Quantum Well Lasers Laterally Grown on Silicon-on-Insulator. J. Light. Technol 2022, 40, 5631–5635. [Google Scholar] [CrossRef]
- Yang, Z.; Li, Y.; Zhou, X.; Pan, J.; Liu, J. Design of electrically pumped sub-micron lasers on patterned SOI substrates. In Proceedings of the International Conference on Optoelectronic and Microelectronic Technology and Application, Nanjing, China, 20–22 October 2020. [Google Scholar]
- Shi, B.; Goswami, A.; Taylor, A.A.; Suran Brunelli, S.T.; Palmstrøm, C.; Klamkin, J. Antiphase Boundary Free InP Microridges on (001) Silicon by Selective Area Heteroepitaxy. Cryst.Growth Des. 2020, 20, 7761–7770. [Google Scholar] [CrossRef]
- Han, Y.; Yan, Z.; Xue, Y.; Lau, K.M. Micrometer-scale InP selectively grown on SOI for fully integrated Si-photonics. Appl. Phys. Lett. 2020, 117, 052102. [Google Scholar] [CrossRef]
- Shi, B.; Song, B.; Taylor, A.A.; Brunelli, S.S.; Klamkin, J. Selective area heteroepitaxy of low dislocation density antiphase boundary free GaAs microridges on flat-bottom (001) Si for integrated silicon photonics. Appl. Phys. Lett. 2021, 118, 122106. [Google Scholar] [CrossRef]
- Li, Z.; Wang, M.; Fang, X.; Li, Y.; Zhou, X.; Yu, H.; Wang, P.; Wang, W.; Pan, J. Monolithic integration of InGaAs/InP multiple quantum wells on SOI substrates for photonic devices. J. Appl. Phys 2018, 123, 053102. [Google Scholar] [CrossRef]
- Biasiol, G.; Gustafsson, A.; Leifer, K.; Kapon, E. Mechanisms of self-ordering in nonplanar epitaxy of semiconductor nanostructures. Phys. Rev. B 2002, 65, 205306. [Google Scholar] [CrossRef]
- Han, Y.; Li, Q.; Ng, K.W.; Zhu, S.; Lau, K.M. InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands. Nanotechnology 2018, 29, 225601. [Google Scholar] [CrossRef]
Measured Position | The Thickness of the SCH–MQW Structure (nm) | ||||||
---|---|---|---|---|---|---|---|
Bottom SCH | 1st Well | 1st Barrier | 2nd Well | 2nd Barrier | 3rd Well | Top SCH | |
a1 | 25 | 2.5 | 5 | 3.8 | 3.8 | 2.5 | 19.2 |
a2 | 55 | 15 | 4.2 | 12 | 2.1 | 12.5 | 17.5 |
a3 | 25 | 5 | 5 | 5 | 3 | 5 | 25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Zhou, X.; Yang, W.; Wang, M.; Yu, H.; Zhang, Y.; Pan, J. III–V Microwires with Reversed Ridge Waveguides Selectively Grown on Pre-Patterned Si Substrates. Crystals 2022, 12, 1561. https://doi.org/10.3390/cryst12111561
Yang Z, Zhou X, Yang W, Wang M, Yu H, Zhang Y, Pan J. III–V Microwires with Reversed Ridge Waveguides Selectively Grown on Pre-Patterned Si Substrates. Crystals. 2022; 12(11):1561. https://doi.org/10.3390/cryst12111561
Chicago/Turabian StyleYang, Zhengxia, Xuliang Zhou, Wenyu Yang, Menqi Wang, Hongyan Yu, Yejin Zhang, and Jiaoqing Pan. 2022. "III–V Microwires with Reversed Ridge Waveguides Selectively Grown on Pre-Patterned Si Substrates" Crystals 12, no. 11: 1561. https://doi.org/10.3390/cryst12111561
APA StyleYang, Z., Zhou, X., Yang, W., Wang, M., Yu, H., Zhang, Y., & Pan, J. (2022). III–V Microwires with Reversed Ridge Waveguides Selectively Grown on Pre-Patterned Si Substrates. Crystals, 12(11), 1561. https://doi.org/10.3390/cryst12111561