Research on Corrosion Resistance and Formation Mechanism of Molybdate Composite Film
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Experimental Materials
2.2. Preparation of Low Phosphorus Passivation Solution Material
2.3. Characterisation
3. Results and Discussion
3.1. Electrochemical Workstation
3.2. Micromorphology Analysis and Detection
3.3. X-ray Photoelectron Spectroscopy
3.4. Explore the Mechanism of Molybdate Passivation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, Z.; Hu, J.; Meng, H. A Review of Recent Developments in Coating Systems for Hot-Dip Galvanized Steel. Front. Mater. 2020, 7, 74. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, S.; Yamaga, S.; Yoshikawa, A. New surface passivation method for GaAs and its effect on the initial growth stage of a heteroepitaxial ZnSe layer. Appl. Surf. Sci. 1992, 60, 274–280. [Google Scholar] [CrossRef]
- Ming, J.; Shi, J.; Sun, W. Effects of Mill Scale and Steel Type on Passivation and Accelerated Corrosion Behavior of Reinforcing Steels in Concrete. J. Mater. Civ. Eng. 2020, 32, 4020029. [Google Scholar] [CrossRef]
- Zhao, Y. Interaction Mechanism between Zn and Passivated Stainless Steel. Int. J. Electrochem. Sci. 2019, 14, 301–314. [Google Scholar] [CrossRef]
- Park, J.H.; Bolan, N.S.; Chung, J.W.; Naidu, R.; Megharaj, M. Environmental monitoring of the role of phosphate compounds in enhancing immobilization and reducing bioavailability of lead in contaminated soils. J. Environ. Monit. 2011, 13, 2234–2242. [Google Scholar] [CrossRef]
- Derun, E.M.; Demirozu, T.; Piskin, M.B.; Piskin, S. The analysis of corrosion performance of car bodies coated by no nickel and low nickel zinc phosphating processes. Mater. Corros. 2005, 56, 412–416. [Google Scholar] [CrossRef]
- Cubillos, G.I.; Olaya, J.J.; Clavijo, D.; Alfonso, J.E.; Bethencourt, M. Corrosion resistance and biocompatibility of zirconium oxynitride thin film growth by rf sputtering. Rev. Mex. De Fis. 2012, 58, 328–334. [Google Scholar]
- Santos, M.; Freire, C. Evaluation of corrosion resistance of steel coated with zinc-iron alloy electrodeposits containing BTSE, BTESPTS and rare earth salts as conversion films. Matéria 2013, 18, 1576–1586. [Google Scholar]
- Aramaki, K. Protection of zinc from corrosion by coverage with a hydrated cerium(III)oxide layer and ultrathin polymer films of a carboxylate self-assembled monolayer modified with alkyltriethoxysilanes. Corros. Sci. 2007, 49, 1963–1980. [Google Scholar] [CrossRef]
- Liu, M.; Cheng, X.; Li, X.; Liu, G.; Pang, J.; Zhu, Y. Corrosion Behavior of Cr Modified HRB400 Steel Rebar in 2%NaCl Solution. Corros. Sci. Prot. Technol. 2015, 27, 559–564. (In Chinese) [Google Scholar]
- Robin, A.; Silva, G.; Rosa, J.L. Corrosion Behavior of HA-316L SS Biocomposites in Aqueous Solutions. Mater. Res. 2013, 16, 1254–1259. [Google Scholar] [CrossRef]
- Castaneda, A.; Howland, J.J.; Corvo, F.; Perez, T. Corrosion of steel reinforced concrete in the tropical coastal atmosphere of Havana City, Cuba. Química Nova 2013, 36, 220–229. [Google Scholar] [CrossRef] [Green Version]
- Abd el Haleem, S.M.; Ateya, B.G. Cyclic voltammetry of copper in sodium hydroxide solutions. J. Electroanal. Chem. 1981, 117, 309–319. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, Z.; Yin, X.; Yang, W.; Chen, Y.; Liu, Y. Effect of the passive films on CaCO3 scale depositing on Q235 steel: Electrochemical and surface investigation. J. Colloid Interface Sci. 2022, 611, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Chen, M.; Xie, D.; Zhong, L.; Zhang, X. A fast, low temperature zinc phosphate coating on steel accelerated by graphene oxide. Corros. Sci. 2017, 128, 1–8. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, Z.; Singh, P.M. Effects of Chloride Ions on Static and Stress Corrosion Behaviors of 9Cr Martensitic Steel. Surf. Technol. 2019, 48, 296–303. (In Chinese) [Google Scholar]
- Wallinder, D.; Pan, J.; Leygraf, C.; Delblanc-Bauer, A. Eis and XPS study of surface modification of 316LVM stainless steel after passivation. Corros. Sci. 1998, 41, 275–289. [Google Scholar] [CrossRef]
- Lu, J.; Kong, G.; Chen, J.; Xu, Q.; Sui, R. Growth and corrosion behavior of molybdate passivation film on hot dip galvanized steel. Trans. Nonferrous Met. Soc. China 2003, 13, 145–148. [Google Scholar]
- Wang, M.; Ma, R.; Du, A.; Hu, S.; Muhammad, M.; Cao, X.; Fan, Y.; Zhao, X.; Wu, J. Corrosion resistance of black phosphorus nanosheets composite phosphate coatings on Q235 steel. Mater. Chem. Phys. 2020, 250, 123056. [Google Scholar] [CrossRef]
- Al-Refaie, A.A.; Walton, J.; Cottis, R.A.; Lindsay, R. Photoelectron spectroscopy study of inhibition of mild steel corrosion by molybdate and nitrite anions. Corros. Sci. 2010, 52, 422. [Google Scholar] [CrossRef]
Chemical Element | C | Si | Mn | S | P | Cr | Ni | Cu | Fe |
---|---|---|---|---|---|---|---|---|---|
Element (%) | 0.12–0.20 | ≤0.3 | 0.30–0.70 | ≤0.045 | ≤0.045 | ≤0.30 | ≤0.30 | ≤0.30 | ≥99.97 |
Na2MoO4 | Na3PO4 | H3BO3 | H2O | |
---|---|---|---|---|
Content (g/L) | 2.5 | 1 | 3 mL/L | Constant volume to 1 L |
ZnO | C6H8O7 | H3PO4 | NaNO2 | H2O | |
---|---|---|---|---|---|
Content (g/L) | 15 | 1.5 | 50 mL/L | 10 mL/L | Constant volume to 1 L |
Sample Status | E Corr /V | I Corr × 10−4/mA |
---|---|---|
Unpassivated sample | −1.038 | 6.45 |
Conventional phosphating sample | −1.025 | 5.19 |
Low phosphorus passivated sample | −0.999 | 1.536 |
Rs (Ω cm2) | Rp (Ω cm2) | CPE (μF cm−2) | |
---|---|---|---|
Unpassivated sample | 2.175 | 417.6 | 585.44 |
Conventional phosphating sample | 2.506 | 659 | 475.53 |
Low phosphorus passivated sample | 2.398 | 701 | 407.33 |
Chemical Element | Mo3d | P2p | O1s |
---|---|---|---|
Elemental binding energy/eV | 232.3/235.77/235.87 | 133/133.79 | 531.2/533.2 |
Percentage composition/at% | 6.9 | 4.6 | 41.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, Y.; Liu, Q.; Fan, Y. Research on Corrosion Resistance and Formation Mechanism of Molybdate Composite Film. Crystals 2022, 12, 1559. https://doi.org/10.3390/cryst12111559
Wan Y, Liu Q, Fan Y. Research on Corrosion Resistance and Formation Mechanism of Molybdate Composite Film. Crystals. 2022; 12(11):1559. https://doi.org/10.3390/cryst12111559
Chicago/Turabian StyleWan, Yi, Qiaoping Liu, and Yunying Fan. 2022. "Research on Corrosion Resistance and Formation Mechanism of Molybdate Composite Film" Crystals 12, no. 11: 1559. https://doi.org/10.3390/cryst12111559
APA StyleWan, Y., Liu, Q., & Fan, Y. (2022). Research on Corrosion Resistance and Formation Mechanism of Molybdate Composite Film. Crystals, 12(11), 1559. https://doi.org/10.3390/cryst12111559