Layer-by-Layer Extracellular Biological Synthesis of Sustainable Ag-Based Nanoparticles for Catalytic Reduction of Methylene Blue Dye
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Method
2.2.1. Preparation of the Bio-Waste from the Culturing Medium of B. Cereus
2.2.2. Synthesis of Bio-Waste Ag-Based NPs
2.2.3. Characterization of the Bio-Waste Ag-Based NPs
2.2.4. Catalytic Dye Degradation of MB Activity
3. Results and Discussions
3.1. Characterization of the Bio-Waste Ag-Based NPs
3.2. Catalytic MB Dye Degradation Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shaban, M.; Almohammedi, A.; Saad, R.; El Sayed, A.M. Design of SnO2:Ni,Ir Nanoparticulate Photoelectrodes for Efficient Photoelectrochemical Water Splitting. Nanomaterials 2022, 12, 453. [Google Scholar] [CrossRef] [PubMed]
- Saad, R.; Gamal, A.; Zayed, M.; Ahmed, A.M.; Shaban, M.; BinSabt, M.; Rabia, M.; Hamdy, H. Fabrication of ZnO/CNTs for Application in CO2 Sensor at Room Temperature. Nanomaterials 2021, 11, 3087. [Google Scholar] [CrossRef] [PubMed]
- Rabie, A.M.; Shaban, M.; Abukhadra, M.R.; Hosny, R.; Ahmed, S.A.; Negm, N.A. Diatomite supported by CaO/MgO nanocomposite as heterogeneous catalyst for biodiesel production from waste cooking oil. J. Mol. Liq. 2019, 279, 224–231. [Google Scholar] [CrossRef]
- Sekhon, B.S. Food nanotechnology-an overview. Nanotechnol. Sci. Appl. 2010, 3, 1–15. [Google Scholar] [PubMed]
- Kordy, M.G.M.; Abdel-Gabbar, M.; Soliman, H.A.; Aljohani, G.; BinSabt, M.; Ahmed, I.A.; Shaban, M. Phyto-Capped Ag Nanoparticles: Green Synthesis, Characterization, and Catalytic and Antioxidant Activities. Nanomaterials 2022, 12, 373. [Google Scholar] [CrossRef]
- Verma, V.; Al-Dossari, M.; Singh, J.; Rawat, M.; Kordy, M.G.M.; Shaban, M. A Review on Green Synthesis of TiO2 NPs: Photocatalysis and Antimicrobial Applications. Polymers 2022, 14, 1444. [Google Scholar] [CrossRef]
- Yuan, F.; Xia, Y.; Lu, Q.; Xu, Q.; Shu, Y.; Hu, X. Recent advances in inorganic functional nanomaterials based flexible electrochemical sensors. Talanta 2022, 244, 123419. [Google Scholar] [CrossRef]
- González-González, R.B.; Rodríguez-Hernández, J.A.; Araújo, R.G.; Sharma, P.; Parra-Saldívar, R.; Ramirez-Mendoza, R.A.; Bilal, M.; Iqbal, H.M. Prospecting carbon-based nanomaterials for the treatment and degradation of endocrine-disrupting pollutants. Chemosphere 2022, 297, 134172. [Google Scholar] [CrossRef]
- De Souza, F.M.; Gupta, R.K. Covalent Organic Frameworks-Based Nanomaterials for Hydrogen Evolution Reactions. In Covalent Organic Frameworks; CRC Press: Boca Raton, FA, USA, 2022; pp. 153–170. [Google Scholar] [CrossRef]
- Alanazi, A.T.; Rice, J.H. Hybrid composite based on conducting polymers and plasmonic nanomaterials applied to catalysis and sensing. Mater. Res. Express 2022, 9, 075002. [Google Scholar] [CrossRef]
- Alsamhary, K.I. Eco-friendly synthesis of silver nanoparticles by Bacillus subtilis and their antibacterial activity. Saudi J. Biol. Sci. 2020, 27, 2185–2191. [Google Scholar] [CrossRef]
- Miranda, R.R.; Sampaio, I.; Zucolotto, V. Exploring silver nanoparticles for cancer therapy and diagnosis. Colloids Surf. B Biointerfaces 2021, 210, 112254. [Google Scholar] [CrossRef]
- Algotiml, R.; Gab-Alla, A.; Seoudi, R.; Abulreesh, H.H.; El-Readi, M.Z.; Elbanna, K. Anticancer and antimicrobial activity of biosynthesized Red Sea marine algal silver nanoparticles. Sci. Rep. 2022, 12, 2421. [Google Scholar] [CrossRef]
- Naganthran, A.; Verasoundarapandian, G.; Khalid, F.E.; Masarudin, M.J.; Zulkharnain, A.; Nawawi, N.M.; Karim, M.; Abdullah, C.A.C.; Ahmad, S.A. Synthesis, Characterization and Biomedical Application of Silver Nanoparticles. Materials 2022, 15, 427. [Google Scholar] [CrossRef]
- Narayanan, K.B.; Sakthivel, N. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci. 2010, 156, 1–13. [Google Scholar] [CrossRef]
- Huang, J.; Zhan, G.; Zheng, B.; Sun, D.; Lu, F.; Lin, Y.; Chen, H.; Zheng, Z.; Zheng, Y.; Li, Q. Biogenic Silver Nanoparticles by Cacumen Platycladi Extract: Synthesis, Formation Mechanism, and Antibacterial Activity. Ind. Eng. Chem. Res. 2011, 50, 9095–9106. [Google Scholar] [CrossRef]
- Role of Microbes in Waste Recycling. Available online: https://sciencing.com/role-microbes-waste-recycling-8091838.html (accessed on 9 September 2022).
- Gupta, J.; Tyagi, B.; Rathour, R.; Thakur, I.S. Microbial Treatment of Waste by Culture-Dependent and Culture-Independent Approaches: Opportunities and Challenges. Microb. Divers. Ecosyst. Sustain. Biotechnol. Appl. 2019, 1, 415–446. [Google Scholar] [CrossRef]
- Dejohn, P.B.; Hutchins, R.A. Treatment of dye wastes with granular activated carbon. Text. Chem. Colorist 1976, 8, 34–38. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Inbakandan, D.; Venkatesan, R.; Khan, S.A. Biosynthesis of gold nanoparticles utilizing marine sponge Acanthella elongata (Dendy, 1905). Colloids Surf. B Biointerfaces 2010, 81, 634–639. [Google Scholar] [CrossRef]
- Alfryyan, N.; Kordy, M.G.M.; Abdel-Gabbar, M.; Soliman, H.A.; Shaban, M. Characterization of the biosynthesized intracellular and extracellular plasmonic silver nanoparticles using Bacillus cereus and their catalytic reduction of methylene blue. Sci. Rep. 2022, 12, 12495. [Google Scholar] [CrossRef]
- Taboada-López, M.V.; Bartczak, D.; Cuello-Núñez, S.; Goenaga-Infante, H.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. AF4-UV-ICP-MS for detection and quantification of silver nanoparticles in seafood after enzymatic hydrolysis. Talanta 2021, 232, 122504. [Google Scholar] [CrossRef] [PubMed]
- Picoli, S.U.; Durán, M.; Andrade, P.F.; Duran, N. Silver nanoparticles/silver chloride (Ag/AgCl) synthesized from Fusarium oxysporum acting against Klebsiella pneumouniae carbapenemase (KPC) and extended spectrum beta-lactamase (ESBL). Front. Nanosci. Nanotechnol. 2016, 2, 107–110. [Google Scholar] [CrossRef] [Green Version]
- Paulkumar, K.; RajeshKumar, S.; Gnanajobitha, G.; Vanaja, M.; Malarkodi, C.; Annadurai, G. Biosynthesis of Silver Chloride Nanoparticles Using Bacillus subtilis MTCC 3053 and Assessment of Its Antifungal Activity. ISRN Nanomater 2013, 2013, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Wang, W.; Xu, Z.; Li, F. Bromide (Br)-Based Synthesis of Ag Nanocubes with High-Yield. Sci. Rep. 2015, 5, 10772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharifi-Rad, M.; Pohl, P. Synthesis of Biogenic Silver Nanoparticles (AgCl-NPs) Using a Pulicaria vulgaris Gaertn. Aerial Part Extract and Their Application as Antibacterial, Antifungal and Antioxidant Agents. Nanomaterials 2020, 10, 638. [Google Scholar] [CrossRef] [Green Version]
- Lou, Z.; Huang, B.; Wang, P.; Wang, Z.; Qin, X.; Zhang, X.; Cheng, H.; Zheng, Z.; Dai, Y. The synthesis of the near-spherical AgCl crystal for visible light photocatalytic applications. Dalton Trans. 2011, 40, 4104–4110. [Google Scholar] [CrossRef]
- Altowyan, A.S.; Shaban, M.; Abdelkarem, K.; El Sayed, A.M. The Impact of Co Doping and Annealing Temperature on the Electrochemical Performance and Structural Characteristics of SnO2 Nanoparticulate Photoanodes. Materials 2022, 15, 6534. [Google Scholar] [CrossRef]
- Altowyan, A.S.; Shaban, M.; Abdelkarem, K.; El Sayed, A.M. The Influence of Electrode Thickness on the Structure and Water Splitting Performance of Iridium Oxide Nanostructured Films. Nanomaterials 2022, 12, 3272. [Google Scholar] [CrossRef]
- Mohamed, H.S.; Rabia, M.; Zhou, X.-G.; Qin, X.-S.; Khabiri, G.; Shaban, M.; Younus, H.A.; Taha, S.; Hu, Z.-Y.; Liu, J.; et al. Phase-junction Ag/TiO2 nanocomposite as photocathode for H2 generation. J. Mater. Sci. Technol. 2021, 83, 179–187. [Google Scholar] [CrossRef]
- Shaban, M.; El Sayed, A.M. Influence of the spin deposition parameters and La/Sn double doping on the structural, optical, and photoelectrocatalytic properties of CoCo2O4 photoelectrodes. Sol. Energy Mater. Sol. Cells 2020, 217, 110705. [Google Scholar] [CrossRef]
- Chishti, A.N.; Ni, L.; Guo, F.; Lin, X.; Liu, Y.; Wu, H.; Chen, M.; Diao, G.W. Magnetite-Silica core-shell nanocomposites decorated with silver nanoparticles for enhanced catalytic reduction of 4-nitrophenol and degradation of methylene blue dye in the water. J. Environ. Chem. Eng. 2021, 9, 104948. [Google Scholar] [CrossRef]
Pos. [°2Th.] | FWHM [°2Th.] | Rel. Int. [%] | [hkl] | d-Spacing [Å] | Cs [nm] | Dislocation Density [nm−2] | Microstrain [%] |
---|---|---|---|---|---|---|---|
31.53 | 0.1574 | 100 | (200) | 2.837 | 64.6 | 2.396 × 10−4 | 0.21954 |
45.31 | 0.1968 | 18.08 | (220) | 2.001 | 52.1 | 3.684 × 10−4 | 0.19203 |
56.28 | 0.1181 | 20.08 | (311) | 1.634 | 102.9 | 0.944 × 10−4 | 0.07944 |
66.05 | 0.1181 | 10.7 | (400) | 1.415 | 109.7 | 0.831 × 10−4 | 0.06448 |
The Used Ag-Based NPs Catalyst | Catalyst Volume or Quantity | Dye, Concentration, and Volume | Reductant, Concentration, and Volume | (min−1) | Time (min) | Ref. |
---|---|---|---|---|---|---|
B. cereus intracellular Ag NPs | 100 µL | MB, 50 ppm, and 25 mL | NaBH4, 0.1 M, and 5 mL | 0.00641 | 150 | [22] |
B. cereus extracellular Ag NPs | 100 µL | MB, 50 ppm, and 25 mL | NaBH4, 0.1 M, and 5 mL | 0.04972 | 80 | |
GC-capped Ag NPs | 100 µL | MB, 50 ppm, and 1 mL | NaBH4, 0.1 M, and 1 mL | 0.2867 | 12 | [5] |
Fe3O4@SiO2/Ag nanocomposite | 0.002 g | MB, 0.00005 M | Photocatalytic | 1.58 ± 0.09 | 14 | [33] |
Bio-waste of B. cereus culture Ag-based NPs | 100 µL | MB, 5 ppm, and 1 mL | NaBH4, 0.1 M, and 1 mL | 0.2861 | 4 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kordy, M.G.M.; Ahmed, I.A.; Abdel-Gabbar, M.; Soliman, H.A.; Altowyan, A.S.; Shaban, M. Layer-by-Layer Extracellular Biological Synthesis of Sustainable Ag-Based Nanoparticles for Catalytic Reduction of Methylene Blue Dye. Crystals 2022, 12, 1576. https://doi.org/10.3390/cryst12111576
Kordy MGM, Ahmed IA, Abdel-Gabbar M, Soliman HA, Altowyan AS, Shaban M. Layer-by-Layer Extracellular Biological Synthesis of Sustainable Ag-Based Nanoparticles for Catalytic Reduction of Methylene Blue Dye. Crystals. 2022; 12(11):1576. https://doi.org/10.3390/cryst12111576
Chicago/Turabian StyleKordy, Mohamed G. M., Inas A. Ahmed, Mohammed Abdel-Gabbar, Hanan A. Soliman, Abeer S. Altowyan, and Mohamed Shaban. 2022. "Layer-by-Layer Extracellular Biological Synthesis of Sustainable Ag-Based Nanoparticles for Catalytic Reduction of Methylene Blue Dye" Crystals 12, no. 11: 1576. https://doi.org/10.3390/cryst12111576
APA StyleKordy, M. G. M., Ahmed, I. A., Abdel-Gabbar, M., Soliman, H. A., Altowyan, A. S., & Shaban, M. (2022). Layer-by-Layer Extracellular Biological Synthesis of Sustainable Ag-Based Nanoparticles for Catalytic Reduction of Methylene Blue Dye. Crystals, 12(11), 1576. https://doi.org/10.3390/cryst12111576