Diagnosis and Control of Brown Leaf Spot of Kiwi (Actinidia deliciosa) Using Biochar-Zinc Oxide Nanocomposite (MB-ZnO) as a Non-Toxic Bio-Fungicides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Observation
2.2. Isolation of Disease-Causing Agent from Infected Leaves
2.3. Microscopic Recognition
2.4. Molecular Identification
2.5. Phylogenetic Analysis through MEGA 7.0
2.6. Pathogenicity Test
2.7. Preparation of MB-ZnO Nanocomposite
2.8. Characterization of Nanocomposite
2.9. In Vitro Antifungal Potential of MB-ZnO
3. Results and Discussion
3.1. Isolation and Identification of the Disease-Causing Pathogen
3.2. Pathogenicity Test
3.3. Molecular Identification and Phylogenetic Analysis
3.4. Depictions of MB-ZnO Nanocomposite
3.4.1. SEM and EDX Analyses
3.4.2. XRD Analysis
3.4.3. FTIR Spectroscopy
3.4.4. VU Analysis
3.4.5. Thermo Gravitational Analysis
3.5. Antifungal Activity Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barboni, T.; Cannac, M.; Chiaramonti, N. Effect of cold storage and ozone treatment on physicochemical parameters, soluble sugars and organic acids in Actinidia deliciosa. Food Chem. 2010, 121, 946–951. [Google Scholar] [CrossRef]
- The Kiwi Fruit in the World. Available online: http://areflh.org/en/francais/the-kiwi-fruit-in-the-world (accessed on 6 December 2022).
- Afsharmanesh, H.; Ahmadzadeh, M.; Javan-Nikkhah, M.; Behboudi, K. Improvement in biocontrol activity of Bacillus subtilis UTB1 against Aspergillus flavus using gamma-irradiation. Crop. Prot. 2014, 60, 83–92. [Google Scholar] [CrossRef]
- Teng, K.; Ruan, H.-S.; Zhang, H.-F. Flavonoid and saponin rich fractions of kiwi roots (Actinidia arguta (Sieb.et Zucc.) Planch) with antinociceptive and anti-inflammatory effects. Afr. J. Pharm. Pharmacol. 2013, 7, 2445–2451. [Google Scholar] [CrossRef] [Green Version]
- Pinto, D.; Delerue-Matos, C.; Rodrigues, F. Bioactivity, phytochemical profile and pro-healthy properties of Actinidia arguta: A review. Food Res. Int. 2020, 136. [Google Scholar] [CrossRef]
- Bayer, S.B.; Gearry, R.B.; Drummond, L.N. Putative mechanisms of kiwifruit on maintenance of normal gastrointestinal function. Crit. Rev. Food Sci. Nutr. 2018, 58, 2432–2452. [Google Scholar] [CrossRef] [Green Version]
- Kvesitadze, G.I.; Kalandiya, A.G.; Papunidze, S.G.; Vanidze, M.R. Identification and Quantification of Ascorbic Acid in Kiwi Fruit by High-Performance Liquid Chromatography. Appl. Biochem. Microbiol. 2001, 37, 215–218. [Google Scholar] [CrossRef]
- He, X.; Fang, J.; Chen, X.; Zhao, Z.; Li, Y.; Meng, Y.; Huang, L. Actinidia chinensis Planch.: A Review of Chemistry and Pharmacology. Front. Pharmacol. 2019, 10. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Wu, H.; Naraginti, S.; Wu, Y. Facile synthesis of ZnO nanoparticles by Actinidia deliciosa fruit peel extract: Bactericidal, anticancer and detoxification properties. Environ. Res. 2021, 200, 111433. [Google Scholar] [CrossRef]
- Naraginti, S.; Li, Y. Preliminary investigation of catalytic, antioxidant, anticancer and bactericidal activity of green synthesized silver and gold nanoparticles using Actinidia deliciosa. J. Photochem. Photobiol. B Biol. 2017, 170, 225–234. [Google Scholar] [CrossRef]
- Schipper, M.A. Revision of the genus Rhizopus. Stud. Mycol. 1984, 25, 1–34. [Google Scholar]
- Stalpers, J.A. A revision of the genus Rhizopus II. The Rh. microsporus-group. Stud. Mycol. 1984, 25, 20–34. [Google Scholar]
- Zheng, R.-Y. A monograph of Rhizopus. Sydowia 2007, 59, 273. [Google Scholar]
- Liu, X.Y.; Huang, H.; Zheng, R.Y. Molecular phylogenetic relationships within Rhizopus based on combined analyses of ITS rDNA and pyrG gene sequences. Sydowia 2007, 59, 235. [Google Scholar]
- Abe, A.; Asano, K.; Sone, T. A Molecular Phylogeny-Based Taxonomy of the Genus Rhizopus. Biosci. Biotechnol. Biochem. 2010, 74, 1325–1331. [Google Scholar] [CrossRef]
- Battaglia, E.; Benoit, I.; Brink, J.V.D.; Wiebenga, A.; Coutinho, P.M.; Henrissat, B.; De Vries, R.P. Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae: A highly specialized approach to carbohydrate degradation depicted at genome level. BMC Genom. 2011, 12, 38. [Google Scholar] [CrossRef] [Green Version]
- Lanoiselet, V.; Cother, E.; Ash, G. Aggregate sheath spot and sheath spot of rice. Crop. Prot. 2007, 26, 799–808. [Google Scholar] [CrossRef]
- Naz, H.; Gul, S.; Chaudhary, H.; Munis, M. First report of rhizopus oryzae causing fruit rot of citrus medica L. J. Plant Pathol. 2015, 1, 215. (In Pakistan) [Google Scholar] [CrossRef]
- Wang, R.Y.; Gao, B.; Chen, S.L.; Ma, J.; Li, X.H.; Xue, C.X. First Report of Rhizopus oryzae Causing Soft Rot on Storage Roots of Sweetpotato in China. Plant Dis. 2017, 101, 1039. [Google Scholar] [CrossRef]
- Arif, S.; Liaquat, F.; Khizar, M.; Shah, I.H.; Inam, W.; Chaudhary, H.J.; Farooq, A.B.U.; Munis, M.F.H. First report of Rhizopus oryzae causing fruit rot of yellow oleander in Pakistan. Can. J. Plant Pathol. 2017, 39, 361–364. [Google Scholar] [CrossRef]
- Arif, S.; Munis, M.F.; Liaquat, F.; Shah, I.; Zhang, Y. Leaf rot caused by Rhizopus oryzae on pak choy (Brassica campestris ssp. chinensis) in China. Phytopathol. Mediter. 2019, 58, 213–217. [Google Scholar] [CrossRef]
- Kwon, J.-H.; Kang, D.-W.; Ha, J.-S.; Kim, J.-W.; Kwak, Y.-S. Soft Rot on Peach Caused by Rhizopus oryzae in Korea. Korean J. Mycol. 2012, 40, 65–68. [Google Scholar] [CrossRef]
- Youssef, K.; Sanzani, S.M.; Ligorio, A.; Ippolito, A.; Terry, L.A. Sodium carbonate and bicarbonate treatments induce resistance to postharvest green mould on citrus fruit. Postharvest Biol. Technol. 2014, 87, 61–69. [Google Scholar] [CrossRef]
- Zubrod, J.P.; Bundschuh, M.; Arts, G.; Brühl, C.A.; Imfeld, G.; Knäbel, A.; Smalling, K. Fungicides: An overlooked pesticide class? Environmen. Sci. Technol. 2019, 53, 3347–3365. [Google Scholar] [CrossRef] [PubMed]
- Din, M.I.; Nabi, A.G.; Rani, A.; Aihetasham, A.; Mukhtar, M. Single step green synthesis of stable nickel and nickel oxide nanoparticles from Calotropis gigantea: Catalytic and antimicrobial potentials. Environ. Nanotechnol. Monit. Manag. 2018, 9, 29–36. [Google Scholar] [CrossRef]
- Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011, 13, 2638–2650. [Google Scholar] [CrossRef]
- Yuliarto, B.; Septiani, N.L.W.; Kaneti, Y.V.; Iqbal, M.; Gumilar, G.; Kim, M.; Na, J.; Wu, K.C.-W.; Yamauchi, Y. Green synthesis of metal oxide nanostructures using naturally occurring compounds for energy, environmental, and bio-related applications. New J. Chem. 2019, 43, 15846–15856. [Google Scholar] [CrossRef]
- Ambika, S.; Sundararajan, M. Antibacterial behaviour of Vitex negundo extract assisted ZnO nanoparticles against pathogenic bacteria. J. Photochem. Photobiol. 2015, 14, 52–57. [Google Scholar] [CrossRef]
- Jeong, G.H.; Lee, Y.W.; Kim, M.; Han, S.W. High-yield synthesis of multi-branched gold nanoparticles and their surface-enhanced Raman scattering properties. J. Colloid Interface Sci. 2008, 329, 97–102. [Google Scholar] [CrossRef]
- Devatha, C.P.; Jagadeesh, K.; Patil, M. Effect of green synthesized iron nanoparticles by Azardirachta indica in different proportions on antibacterial activity. Environ. Nanotechnol. Monitor. Manag. 2018, 9, 85–94. [Google Scholar] [CrossRef]
- Devatha, C.P.; Thalla, A.K.; Katte, S.Y. Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic wastewater. J. Clean. Prod. 2016, 139, 1425–1435. [Google Scholar] [CrossRef]
- Cullings, K. Design and testing of a plant-specific PCR primer for ecological and evolutionary studies. Mol. Ecol. 1992, 1, 233–240. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Mycologia 1990, 18, 315–322. [Google Scholar]
- Kumar, M.; Xiong, X.; Wan, Z.; Sun, Y.; Tsang, D.C.; Gupta, J.; Gao, B.; Cao, X.; Tang, J.; Ok, Y.S. Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials. Bioresour. Technol. 2020, 312, 123613. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yao, Z.; Zhao, S.; Xie, H.; Yang, M. Rhizopus Stem Rot of Orobanche aegyptiaca caused by Rhizopus oryzae in China. J. Phytopathol. 2013, 161, 745–748. [Google Scholar] [CrossRef]
- Park, J.-H.; Cho, S.-E.; Kim, B.-S.; Shin, H.-D. First report of postharvest root rot caused by Rhizopus oryzae on Codonopsis lanceolata. Australas. Plant Dis. Notes 2014, 9. [Google Scholar] [CrossRef]
- Tu, C.; Wei, J.; Guan, F.; Liu, Y.; Sun, Y.; Luo, Y. Biochar and bacteria inoculated biochar enhanced Cd and Cu immobilization and enzymatic activity in a polluted soil. Environ. Int. 2020, 137, 105576. [Google Scholar] [CrossRef]
- Kamal, A.; Saleem, M.H.; Alshaya, H.; Okla, M.K.; Chaudhary, H.J.; Munis, M.F.H. Ball-milled synthesis of maize biochar-ZnO nanocomposite (MB-ZnO) and estimation of its photocatalyticability against different organic and inorganic pollutants. J. Sau. Chem. Soc. 2022, 101445. [Google Scholar] [CrossRef]
- Duo, S.; Zhong, R.; Liu, Z.; Wang, J.; Liu, T.; Huang, C.; Wu, H. One-step hydrothermal synthesis of ZnO microflowers and their composition-/hollow nanorod-dependent wettability and photocatalytic property. J. Phys. Chem. Solids 2018, 120, 20–33. [Google Scholar] [CrossRef]
- Kamal, A.; Haroon, U.; Manghwar, H.; Alamer, K.H.; Alsudays, I.M.; Althobaiti, A.T.; Iqbal, A.; Akbar, M.; Farhana; Anar, M.; et al. Biological Applications of Ball-Milled Synthesized Biochar-Zinc Oxide Nanocomposite Using Zea mays L. Molecules 2022, 27, 5333. [Google Scholar] [CrossRef]
- Louren cco, M.A.; Zeng, J.; Jagdale, P.; Castellino, M.; Sacco, A.; Farkhondehfal, M.A.; Pirri, C.F. Biochar/Zinc Oxide Composites as Effective Catalysts for Electrochemical CO2 Reduction. Sustain. Chem. Eng. 2021, 5445–5453. [Google Scholar] [CrossRef]
- Chu, C.-C.; White, K.L.; Liu, P.; Zhang, X.; Sue, H.-J. Electrical conductivity and thermal stability of polypropylene containing well-dispersed multi-walled carbon nanotubes disentangled with exfoliated nanoplatelets. Carbon 2012, 50, 4711–4721. [Google Scholar] [CrossRef]
- Jung, K.-W.; Choi, B.H.; Dao, C.M.; Lee, Y.J.; Choi, J.-W.; Ahn, K.-H.; Lee, S.-H. Aluminum carboxylate-based metal organic frameworks for effective adsorption of anionic azo dyes from aqueous media. J. Ind. Eng. Chem. 2018, 59, 149–159. [Google Scholar] [CrossRef]
- Saleh, T.A.; Adio, S.O.; Asif, M.; Dafalla, H. Statistical analysis of phenols adsorption on diethylenetriamine-modified activated carbon. J. Clean. Prod. 2018, 182, 960–968. [Google Scholar] [CrossRef]
- Batra, N.; Tomar, M.; Gupta, V. Realization of an efficient cholesterol biosensor using ZnO nanostructured thin film. Analyst 2012, 137, 5854–5859. [Google Scholar] [CrossRef]
- Monticone, S.; Tufeu, R.; Kanaev, A.V. Complex Nature of the UV and Visible Fluorescence of Colloidal ZnO Nanoparticles. J. Phys. Chem. B 1998, 102, 2854–2862. [Google Scholar] [CrossRef]
- Akir, S.; Hamdi, A.; Addad, A.; Coffinier, Y.; Boukherroub, R.; Dakhlaoui Omrani, A. Facile synthesis of carbon-ZnO nanocomposite with enhanced visible light photocatalytic performance. Appl. Surf. Sci. 2017, 400, 461.e70. [Google Scholar] [CrossRef]
- Bakr, A.; Sayed, N.; Salama, T.; Ali, I.O.; Gayed, R.; Negm, N. Potential of Mg–Zn–Al layered double hydroxide (LDH)/m ontmorillonite nanocomposite in remediation of wastewater containing manganese ions. Res. Chem. Int. 2018, 44, 389–405. [Google Scholar] [CrossRef]
- Zhang, L.-J.; Yang, M.-Y.; Sun, Z.-H.; Tan, C.-X.; Weng, J.-Q.; Wu, H.-K.; Liu, X.-H. Synthesis and Antifungal Activity of 1,3,4-Thiadiazole Derivatives Containing Pyridine Group. Lett. Drug Des. Discov. 2014, 11, 1107–1111. [Google Scholar] [CrossRef]
- Hoseinzadeh, A.; Habibi-Yangjeh, A.; Davari, M. Antifungal activity of magnetically separable Fe3O4/ZnO/AgBr nanocomposites prepared by a facile microwave-assisted method. Prog. Nat. Sci. Mat. Int. 2016, 26, 334–340. [Google Scholar] [CrossRef] [Green Version]
- Omar, K.; Meena, B.I.; Muhammed, S.A. Study on the activity of ZnO-SnO2 nanocomposite against bacteria and fungi. Physicochem. Probl. Miner. Process. 2016, 52. [Google Scholar]
- Thaya, R.; Malaikozhundan, B.; Vijayakumar, S.; Sivakamavalli, J.; Jeyasekar, R.; Shanthi, S.; Vaseeharan, B.; Ramasamy, P.; Sonawane, A. Chitosan coated Ag/ZnO nanocomposite and their antibiofilm, antifungal and cytotoxic effects on murine macrophages. Microb. Pathog. 2016, 100, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.T.; Vu, V.T.; Nguyen, T.A.; Tran, V.K.; Nguyen-Tri, P. Antibacterial activity of TiO2-and ZnO-decorated with silver nanoparticles. J. Compos. Sci. 2019, 3, 61. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L.; Dias, N.; Carvalho, J.; Fernandes, S.; Santos, C.; Lima, N. Synthesis, characterization, and antifungal activity of chemically and fungal-produced silver nanoparticles against Trichophyton rubrum. J. Appl. Microbiol. 2014, 117, 1601–1613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Ran, F.; Shi, J.; Chen, T.; Zhao, Z.; Zhang, Z.; He, L.; Li, W.; Wang, B.; Chen, X.; et al. Identification of the Causal Agent of Brown Leaf Spot on Kiwifruit and Its Sensitivity to Different Active Ingredients of Biological Fungicides. Pathogens 2022, 11, 673. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamal, A.; Ali, M.; Farraj, D.A.A.; Al-Zaidi, E.M.; Khizar, M.; Aljaaidi, R.A.; Elshikh, M.S.; Munis, M.F.H. Diagnosis and Control of Brown Leaf Spot of Kiwi (Actinidia deliciosa) Using Biochar-Zinc Oxide Nanocomposite (MB-ZnO) as a Non-Toxic Bio-Fungicides. Crystals 2023, 13, 98. https://doi.org/10.3390/cryst13010098
Kamal A, Ali M, Farraj DAA, Al-Zaidi EM, Khizar M, Aljaaidi RA, Elshikh MS, Munis MFH. Diagnosis and Control of Brown Leaf Spot of Kiwi (Actinidia deliciosa) Using Biochar-Zinc Oxide Nanocomposite (MB-ZnO) as a Non-Toxic Bio-Fungicides. Crystals. 2023; 13(1):98. https://doi.org/10.3390/cryst13010098
Chicago/Turabian StyleKamal, Asif, Musrat Ali, Dunia A. Al Farraj, Enshad M. Al-Zaidi, Maria Khizar, Reem Amer Aljaaidi, Mohmed S. Elshikh, and Muhammad Farooq Hussain Munis. 2023. "Diagnosis and Control of Brown Leaf Spot of Kiwi (Actinidia deliciosa) Using Biochar-Zinc Oxide Nanocomposite (MB-ZnO) as a Non-Toxic Bio-Fungicides" Crystals 13, no. 1: 98. https://doi.org/10.3390/cryst13010098
APA StyleKamal, A., Ali, M., Farraj, D. A. A., Al-Zaidi, E. M., Khizar, M., Aljaaidi, R. A., Elshikh, M. S., & Munis, M. F. H. (2023). Diagnosis and Control of Brown Leaf Spot of Kiwi (Actinidia deliciosa) Using Biochar-Zinc Oxide Nanocomposite (MB-ZnO) as a Non-Toxic Bio-Fungicides. Crystals, 13(1), 98. https://doi.org/10.3390/cryst13010098