Structural and Luminescence Properties of Cu(I)X-Quinoxaline under High Pressure (X = Br, I)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of [(CuX)2(Quin)] with X = Br, I
2.2. X-ray Diffraction Measurements
2.3. High-Pressure Optical Measurements
2.4. Computer Simulations
3. Results and Discussion
3.1. Structural Analysis
3.2. The Equation of State Analysis
3.3. Luminescence Properties under Pressure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blake, A.; Brooks, N.; Champness, N.; Hanton, L.; Hubberstey, P.; Schroder, M. Copper(I) halide supramolecular networks linked by N-heterocyclic donor bridging ligands. Pure Appl. Chem. 1998, 70, 2351–2357. [Google Scholar] [CrossRef]
- Blake, A.J.; Brooks, N.R.; Champness, N.R.; Cooke, P.A.; Crew, M.; Deveson, A.M.; Hanton, L.R.; Hubberstey, P.; Fenske, D.; Schröder, M. Copper(I) iodide coordination networks-controlling the placement of (CuI)∞ ladders and chains within two-dimensional sheets. Cryst. Eng. 1999, 2, 181–195. [Google Scholar] [CrossRef]
- Li, D.; Shi, W.-J.; Hou, L. Coordination polymers of copper(I) halides and neutral heterocyclic thiones with new coordination modes. Inorg. Chem. 2005, 44, 3907–3913. [Google Scholar] [CrossRef] [PubMed]
- Peng, R.; Li, M.; Li, D. Copper(I) halides: A versatile family in coordination chemistry and crystal engineering. Coord. Chem. Rev. 2010, 254, 1–18. [Google Scholar] [CrossRef]
- Troyano, J.; Perles, J.; Amo-Ochoa, P.; Zamora, F.; Delgado, S. Strong luminescent copper(i) halide coordination polymers and dinuclear complexes with thioacetamide and N,N′-donor ligands. CrystEngComm 2016, 18, 1809–1817. [Google Scholar] [CrossRef] [Green Version]
- Aguirrechu-Comerón, A.; Hernández-Molina, R.; González-Platas, J. Structure of two new compounds of copper(I) iodide with N-donor and P-donor ligands. J. Struct. Chem. 2018, 59, 943–948. [Google Scholar] [CrossRef]
- Neshat, A.; Aghakhanpour, R.B.; Mastrorilli, P.; Todisco, S.; Molani, F.; Wojtczak, A. Dinuclear and tetranuclear copper(I) iodide complexes with P and P^N donor ligands: Structural and photoluminescence studies. Polyhedron 2018, 154, 217–228. [Google Scholar] [CrossRef]
- Masahara, S.; Yokoyama, H.; Suzaki, Y.; Ide, T. Convenient synthesis of copper(i) halide quasi-one-dimensional coordination polymers: Their structures and solid-state luminescent properties. Dalton Trans. 2021, 50, 8889–8898. [Google Scholar] [CrossRef] [PubMed]
- Cariati, E.; Roberto, D.; Ugo, R.; Ford, P.C.; Galli, S.; Sironi, A. New structural motifs, unusual quenching of the emission, and second harmonic generation of copper(I) iodide polymeric or oligomeric adducts with para-substituted pyridines or trans-stilbazoles. Inorg. Chem. 2005, 44, 4077–4085. [Google Scholar] [CrossRef]
- Liu, J.B.; Li, H.H.; Chen, Z.R.; Li, J.B.; Chen, X.B.; Huang, C.C. A new semi-conductive copper(I) halide coordination polymer: Synthesis, structure, and theoretical study. J. Clust. Sci. 2009, 20, 515–523. [Google Scholar] [CrossRef]
- Perruchas, S.; Le Goff, X.F.; Maron, S.; Maurin, I.; Guillen, F.; Garcia, A.; Gacoin, T.; Boilot, J.P. Mechanochromic and thermochromic luminescence of a copper iodide cluster. J. Am. Chem. Soc. 2010, 132, 10967–10969. [Google Scholar] [CrossRef] [PubMed]
- Perruchas, S.; Tard, C.; Le Goff, X.F.; Fargues, A.; Garcia, A.; Kahlal, S.; Gacoin, T.; Boilot, J.P. Thermochromic luminescence of copper iodide clusters: The case of phosphine ligands. Inorg. Chem. 2011, 50, 10682–10692. [Google Scholar] [CrossRef]
- Gallego, A.; Castillo, O.; Gómez-García, C.; Zamora, F.; Delgado, S. Electrical conductivity and luminescence in coordination polymers based on copper(I)-halides and sulfur-pyrimidine ligands. Inorg. Chem. 2012, 51, 718–727. [Google Scholar] [CrossRef]
- Hassanein, K.; Conesa-Egea, J.; Delgado, S.; Benmansour, S.; Martinez, I.; Abellan, G.; Gomez-Garcia, C.J.; Zamora, F.; Amo-Ochoa, P. Electrical conductivity and strong luminescence in copper iodide double chains with isonicotinato derivatives. Chem. Eur. J. 2015, 21, 17282–17292. [Google Scholar] [CrossRef] [PubMed]
- Khatri, N.M.; Pablico-Lansigan, M.H.; Boncher, W.L.; Mertzman, J.E.; Labatete, A.C.; Grande, L.M.; Wunder, D.; Prushan, M.J.; Zhang, W.; Halasyamani, P.S.; et al. Luminescence and nonlinear optical properties in copper(I) halide extended networks. Inorg. Chem. 2016, 55, 11408–11417. [Google Scholar] [CrossRef]
- Schlachter, A.; Harvey, P.D. Properties and applications of copper halide-chalcogenoether and -chalcogenone networks and functional materials. J. Mater. Chem. C. 2021, 9, 6648–6685. [Google Scholar] [CrossRef]
- Mensah, A.; Shao, J.-J.; Ni, J.-L.; Li, G.-J.; Wang, F.-M.; Chen, L.-Z. Recent progress in luminescent Cu(I) halide complexes: A mini-review. Front. Chem. 2022, 9, 816363. [Google Scholar] [CrossRef]
- Ma, Z.; Shi, Z.; Qin, C.; Cui, M.; Yang, D.; Wang, X.; Wang, L.; Ji, X.; Chen, X.; Sun, J.; et al. Stable yellow light-emitting devices based on ternary copper halides with broadband emissive self-trapped excitons. ACS Nano 2020, 14, 4475–4486. [Google Scholar] [CrossRef]
- Hashimoto, M.; Igawa, S.; Yashima, M.; Kawata, I.; Hoshino, M.; Osawa, M. Highly efficient green organic light-emitting diodes containing luminescent three-coordinate copper(I) complexes. J. Am. Chem. Soc. 2011, 133, 10348–10351. [Google Scholar] [CrossRef]
- Xie, M.; Han, C.; Zhang, J.; Xie, G.; Xu, H. White electroluminescent phosphine-chelated copper iodide nanoclusters. Chem. Mater. 2017, 29, 6606–6610. [Google Scholar] [CrossRef]
- Ravaro, L.P.; Zanoni, K.P.S.; de Camargo, A.S.S. Luminescent copper(I) complexes as promising materials for the next generation of energy-saving OLED devices. Energy Rep. 2020, 6 (Suppl. 4), 37–45. [Google Scholar] [CrossRef]
- Guo, B.K.; Yang, F.; Wang, Y.Q.; Wei, Q.; Liu, L.; Zhong, X.X.; Wang, L.; Gong, J.K.; Li, F.B.; Wong, W.Y.; et al. Efficient TADF-OLEDs with ultra-soluble copper(I) halide complexes containing non-symmetrically substituted bidentate phosphine and PPh3 ligands. J. Lumin. 2020, 220, 116963-1–116963-11. [Google Scholar] [CrossRef]
- Jia, W.L.; McCormick, T.; Tao, Y.; Lu, J.-P.; Wang, S. New phosphorescent polynuclear Cu(I) compounds based on linear and star-shaped 2-(2′-Pyridyl)benzimidazolyl derivatives: Syntheses, structures, luminescence, and electroluminescence. Inorg. Chem. 2005, 44, 5706–5712. [Google Scholar] [CrossRef]
- Armaroli, N.; Accorsi, G.; Holler, M.; Moudam, O.; Nierengarten, J.-F.; Zhou, Z.; Wegh, R.T.; Welter, R. Highly luminescent Cu(I) complexes for light-emitting electrochemical cells. Adv. Mater. 2006, 18, 1313–1316. [Google Scholar] [CrossRef]
- Chuaysong, R.; Chooto, P.; Pakawatchai, C. Electrochemical properties of copper(I) halides and substituted thiourea complexes. ScienceAsia 2008, 34, 440–442. [Google Scholar] [CrossRef]
- Ezealigo, B.N.; Nwanya, A.C.; Simo, A.; Osuji, R.U.; Bucher, R.; Maaza, M.; Fabian, I.; Ezema, F.I. Optical and electrochemical capacitive properties of copper (I) iodide thin film deposited by SILAR method. Arab. J. Chem. 2019, 12, 5380–5391. [Google Scholar] [CrossRef]
- Yin, J.; Lei, Q.; Han, Y.; Bakr, O.M.; Mohammed, O.F. Luminescent copper(I) halides for Optoelectronic applications. Phys. Status Solidi RRL 2021, 15, 2100138. [Google Scholar] [CrossRef]
- Liu, G.-N.; Xu, R.-D.; Zhao, R.-Y.; Sun, Y.; Bo, Q.-B.; Duan, Z.-Y.; Li, Y.-H.; Wang, Y.; Wu, Q.; Li, C. Hybrid copper iodide cluster-based pellet sensor for highly selective optical detection of o-nitrophenol and tetracycline hydrochloride in aqueous solution. ACS Sustain. Chem. Eng. 2019, 7, 18863–18873. [Google Scholar] [CrossRef]
- Peng, Y.; Yaacobi-Gross, N.; Perumal, A.K.; Faber, H.A.; Vourlias, G.; Patsalas, P.A.; Bradley, D.D.C.; He, Z.; Anthopoulos, T.D. Efficient organic solar cells using copper(I) iodide (CuI) hole transport layers. Appl. Phys. Lett. 2015, 106, 243302-1–243302-4. [Google Scholar] [CrossRef] [Green Version]
- Sepalage, G.A.; Meyer, S.; Pascoe, A.; Scully, A.D.; Huang, F.; Bach, U.; Cheng, Y.-B.; Spiccia, L. Copper(I) iodide as hole-conductor in planar perovskite solar cells: Probing the origin of J–V hysteresis. Adv. Funct. Mater. 2015, 25, 5650–5661. [Google Scholar] [CrossRef]
- Lopez, J.; Gonzalez-Platas, J.; Rodriguez-Mendoza, U.R.; Martinez, J.I.; Delgado, S.; Lifante-Pedrola, G.; Cantelar, E.; Guerrero-Lemus, R.; Hernandez-Rodriguez, C.; Amo-Ochoa, P. Cu(I)–I-2,4-diaminopyrimidine coordination polymers with optoelectronic properties as a proof of concept for solar cells. Inorg. Chem. 2021, 60, 1208–1219. [Google Scholar] [CrossRef] [PubMed]
- Graham, P.M.; Pike, R.D.; Sabat, M.; Bailey, R.D.; Pennington, W.T. Coordination polymers of copper(I) halides. Inorg. Chem. 2000, 39, 5121–5132. [Google Scholar] [CrossRef] [PubMed]
- Molina, R.H.; Aguirretxu, A.; González-Platas, J. Synthesis and structure of [CuI(3-methyl-2-phenylpiridine)2] with intermolecular stacking interactions. J. Struct. Chem. 2014, 55, 1478–1483. [Google Scholar] [CrossRef]
- Bath, E.R.; Golz, C.; Knorr, M.; Strohmann, C. Crystal structure of di-μ-iodido-bis[bis(acetonitrile-κN)copper(I)]. Acta Cryst. E 2015, 71, m189–m190. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Li, Y.; Cui, Y.; Pan, J. A new coordination tetramer of copper(I) iodide and benzyldimethylamine: Tetra-μ3-iodido-tetrakis[(benzyldimethylamine-κN)copper(I)]. Acta Cryst. E 2009, 765, m906. [Google Scholar] [CrossRef] [Green Version]
- Conesa-Egea, J.; Gallardo-Martínez, J.; Delgado, S.; Martínez, J.I.; Gonzalez-Platas, J.; Fernández-Moreira, V.; Rodríguez-Mendoza, U.R.; Ocón, P.; Zmora, F.; Amo-Ochoa, P. Multistimuli response micro- and nanolayers of a coordination polymer based on Cu2I2 chains linked by 2-aminopyrazine. Small 2017, 13, 1700965. [Google Scholar] [CrossRef]
- Conesa-Egea, J.; Nogal, N.; Martínez, J.I.; Fernández-Moreira, V.; Rodríguez-Mendoza, U.R.; Gonzalez-Platas, J.; Gómez-García, C.J.; Delgado, S.; Zamora, F.; Amo-Ochoa, P. Smart composite films of nanometric thickness based on copper–iodine coordination polymers. Toward sensors. Chem. Sci. 2018, 9, 8000–8010. [Google Scholar] [CrossRef] [Green Version]
- Conesa-Egea, J.; González-Platas, J.; Rodríguez-Mendoza, U.R.; Martínez, J.I.; Ocon, P.; Fernández-Moreira, V.; Costa, R.D.; Fernández-Cestau, J.; Zamora, F.; Amo-Ochoa, P. Cunning defects: Emission control by structural point defects on Cu(i)I double chain coordination polymers. J. Mater. Chem. C 2020, 8, 1448–1458. [Google Scholar] [CrossRef]
- López, J.; Murillo, M.; Lifante-Pedrola, G.; Cantelar, E.; Gonzalez-Platas, J.; Rodríguez-Mendoza, U.R.; Amo-Ochoa, P. Multi-stimulus semiconductor Cu(I)–I-pyrimidinecoordination polymer with thermo- and mechanochromic sensing. CrystEngComm 2022, 24, 341–349. [Google Scholar] [CrossRef]
- Armaroli, N.; Accorsi, G.; Cardinali, F.; Listorti, A. Photochemistry and photophysics of coordination compounds: Copper. Top. Curr. Chem. 2007, 280, 69–115. [Google Scholar] [CrossRef]
- Benito, Q.; Maurin, I.; Cheisson, T.; Nocton, G.; Fargues, A.; Garcia, A.; Martineau, C.; Gacoin, T.; Boilot, J.-P.; Perruchas, S. Mechanochromic luminescence of copper iodide clusters. Chem. Eur. J. 2015, 21, 5892–5897. [Google Scholar] [CrossRef]
- Benito, Q.; Le Goff, X.F.; Nocton, G.; Fargues, A.; Garcia, A.; Berhault, A.; Kahlal, S.; Saillard, J.Y.; Martineau, C.; Trébosc, J.; et al. Geometry flexibility of copper iodide clusters: Variability in luminescence thermochromism. Inorg. Chem. 2015, 54, 4483–4494. [Google Scholar] [CrossRef]
- Benito, Q.; Baptiste, B.; Polian, A.; Delbes, L.; Martinelli, L.; Gacoin, T.; Boilot, J.P.; Perruchas, S. Pressure control of cuprophilic interactions in a luminescent mechanochromic copper cluster. Inorg. Chem. 2015, 54, 9821–9825. [Google Scholar] [CrossRef]
- Fu, Z.; Lin, J.; Wang, L.; Li, C.; Yan, W.; Wu, T. Cuprous iodide pseudopolymorphs based on imidazole ligand and their luminescence thermochromism. Cryst. Growth Des. 2016, 16, 2322–2327. [Google Scholar] [CrossRef]
- Troyano, J.; Perles, J.; Amo-Ochoa, P.; Martines, J.I.; Concepcion-Gimeno, M.; Fernandez-Moreira, V.; Zamora, F.; Delgado, S. Luminescent thermochromism of 2D coordination polymers based on copper(I) halides with 4-Hydroxythiophenol. Chem. Eur. J. 2016, 22, 18027–18035. [Google Scholar] [CrossRef] [Green Version]
- Aguirrechu-Comerón, A.; Hernández-Molina, R.; Rodríguez-Hernández, P.; Muñoz, A.; Rodríguez-Mendoza, U.R.; Lavín, V.; Angel, R.J.; Gonzalez-Platas, J. Experimental and ab initio study of catena(bis(μ2-iodo)-6-methylquinoline-copper(I)) under pressure: Synthesis, crystal structure, electronic, and luminescence properties. Inorg. Chem. 2016, 55, 7476–7484. [Google Scholar] [CrossRef]
- Aguirrechu-Comerón, A.; Rodríguez-Hernández, P.; Rodríguez-Mendoza, U.R.; Vallcorba, O.; Muñoz, A.; Perruchas, S.; Gonzalez-Platas, J. Equation of state and structural characterization of Cu4I4{PPh2(CH2CH = CH2)}4 under pressure. High Press. Res. 2019, 39, 69–80. [Google Scholar] [CrossRef]
- Rigaku Oxford Diffraction. CrysAlisPro Software System, Version 1.171.42.71; Rigaku Corporation: Oxford, UK, 2022. [Google Scholar]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Spek, A.L. Structure validation in chemical crystallography. Acta Cryst. D 2009, 65, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Shen, G.; Wang, Y.; Dewaele, A.; Wu, C.; Fratanduono, D.E.; Eggert, J.; Klotz, S.; Dziubek, K.F.; Loubeyre, P.; Fatyanov, O.V.; et al. Toward an international practical pressure scale: A proposal for an IPPS ruby gauge. High Pres. Res. 2020, 40, 299–314. [Google Scholar] [CrossRef]
- Angel, R.J.; Bujak, M.; Zhao, J.; Gatta, G.D.; Jacobsen, S.D. Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J. Appl. Cryst. 2007, 40, 26–32. [Google Scholar] [CrossRef]
- Klotz, S.; Chervin, J.; Munsch, P.; Le Marchand, G. Hydrostatic limits of 11 pressure transmitting media. J. Phys. D Appl. Phys. 2009, 42, 075413. [Google Scholar] [CrossRef]
- Errandonea, D.; Muñoz, A.; Gonzalez-Platas, J. Comment on High-pressure x-ray diffraction study of YBO3/Eu3+, GdBO3, and EuBO3: Pressure-induced amorphization in GdBO3. J. Appl. Phys. 2014, 115, 043507. [Google Scholar] [CrossRef]
- Mujica, A.; Rubio, A.; Muñoz, A.; Needs, R.J. High-pressure phases of group-IV, III-V, and II-VI compounds. Rev. Mod. Phys. 2003, 75, 863–912. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1997, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [Green Version]
- Monkhorst, H.J.; Pack, J.D. Special points for brillouin-zone integration. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Yang, L.; Powell, D.R.; Houser, R.P. Structural variation in copper(I) complexes with pyridylmethylamide ligands: Structural analysis with a new four-coordinate geometry index, τ4. Dalton Trans. 2007, 9, 955–964. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The cambridge structural database. Acta Cryst. B 2016, 72, 171–179. [Google Scholar] [CrossRef]
- Gonzalez-Platas, J.; Alvaro, M.; Nestola, F.; Angel, R.J. EoSFit7-GUI: A new graphical user interface for equation of state calculations, analyses and teaching. J. Appl. Cryst. 2016, 49, 1377–1382. [Google Scholar] [CrossRef]
- Angel, R.J.; Gonzalez-Platas, J.; Alvaro, M. EosFit7c and a fortran module (library) for equation of state calculations. Z. Kristallogr. 2014, 229, 405–419. [Google Scholar] [CrossRef]
- Moggach, S.A.; Parsons, S. High pressure crystallography of inorganic and organometallic complexes. Spectrosc. Prop. Inorg. Organomet. Compd. 2009, 40, 324–354. [Google Scholar] [CrossRef]
- Zhang, Q.; Komino, T.; Matsunami, S.; Goushi, K.; Adachi, C.; Huang, S. Triplet exciton confinement in green organic light-emitting diodes containing luminescent charge-transfer Cu(I) complexes. Adv. Funct. Mater. 2012, 22, 2327–2336. [Google Scholar] [CrossRef]
- Ford, P.C.; Cariati, E. Bourassa, photoluminescence properties of multinuclear copper(I) compounds. J. Chem. Rev. 1999, 99, 3625–3648. [Google Scholar] [CrossRef]
- Kim, T.H.; Shin, Y.W.; Jung, J.H.; Kim, J.S.; Kim, J. Crystal-to-crystal transformation between three cui coordination polymers and structural evidence for luminescence thermochromism. J. Angew. Chem. 2008, 120, 697–700. [Google Scholar] [CrossRef]
- Lees, A.J. The luminescence rigidochromic effect exhibited by organometallic complexes: Rationale and applications. Comments Inorg. Chem. 1995, 17, 319–346. [Google Scholar] [CrossRef]
[(CuBr)2(Quin)] | [(CuI)2(Quin)] | |
---|---|---|
Formula | C8H6N2Cu2Br2 | C8H6Cu2I2N2 |
Dcalc/g cm−3 | 2.806 | 3.164 |
μ/mm−1 | 12.355 | 9.678 |
Formula weight | 417.05 | 511.03 |
Color | Dark orange | Dark yellow |
Size/mm3 | 0.14 × 0.05 × 0.03 | 0.07 × 0.03 × 0.02 |
T/K | 293(2) | 293(2) |
Crystal system | Monoclinic | Monoclinic |
Space group | P21/n | P21/n |
a/Å | 4.1080(2) | 4.3722(2) |
b/Å | 17.6594(7) | 17.7218(7) |
c/Å | 13.6139(9) | 13.8630(5) |
α/° | 90 | 90 |
β/° | 91.496(6) | 92.886(4) |
γ/° | 90 | 90 |
V/Å3 | 987.28(9) | 1072.79(8) |
Z | 4 | 4 |
Wavelength/Å | 0.71073 | 0.71073 |
Radiation type | Mo Kα | Mo Kα |
Θmin/° | 1.889 | 1.867 |
Θmax/° | 29.163 | 26.370 |
Measured refl’s. | 4422 | 4010 |
Independent refl’s. | 1974 | 2199 |
Refl’s I ≥ 2 σ(I) | 1629 | 1835 |
Rint | 0.0236 | 0.0292 |
Param./Restr. | 127/0 | 127/0 |
Largest peak | 0.658 | 0.684 |
Deepest hole | −0.798 | −0.795 |
GooF | 1.138 | 1.057 |
wR2 (all data) | 0.0699 | 0.0638 |
wR2 | 0.0656 | 0.0598 |
R1 (all data) | 0.0529 | 0.0517 |
R1 | 0.0386 | 0.0376 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez-Platas, J.; Rodriguez-Mendoza, U.R.; Aguirrechu-Comeron, A.; Hernandez-Molina, R.R.; Turnbull, R.; Rodriguez-Hernandez, P.; Muñoz, A. Structural and Luminescence Properties of Cu(I)X-Quinoxaline under High Pressure (X = Br, I). Crystals 2023, 13, 100. https://doi.org/10.3390/cryst13010100
Gonzalez-Platas J, Rodriguez-Mendoza UR, Aguirrechu-Comeron A, Hernandez-Molina RR, Turnbull R, Rodriguez-Hernandez P, Muñoz A. Structural and Luminescence Properties of Cu(I)X-Quinoxaline under High Pressure (X = Br, I). Crystals. 2023; 13(1):100. https://doi.org/10.3390/cryst13010100
Chicago/Turabian StyleGonzalez-Platas, Javier, Ulises R. Rodriguez-Mendoza, Amagoia Aguirrechu-Comeron, Rita R. Hernandez-Molina, Robin Turnbull, Placida Rodriguez-Hernandez, and Alfonso Muñoz. 2023. "Structural and Luminescence Properties of Cu(I)X-Quinoxaline under High Pressure (X = Br, I)" Crystals 13, no. 1: 100. https://doi.org/10.3390/cryst13010100
APA StyleGonzalez-Platas, J., Rodriguez-Mendoza, U. R., Aguirrechu-Comeron, A., Hernandez-Molina, R. R., Turnbull, R., Rodriguez-Hernandez, P., & Muñoz, A. (2023). Structural and Luminescence Properties of Cu(I)X-Quinoxaline under High Pressure (X = Br, I). Crystals, 13(1), 100. https://doi.org/10.3390/cryst13010100