Ab Initio Theoretical Study of DyScO3 at High Pressure
Abstract
:1. Introduction
2. Theoretical Method and Details of the Calculations
3. Results and Discussion
3.1. Crystallographic Description of DyScO Perovskite and Evolution of Its Structural Properties with Pressure
3.2. Elastic Properties
3.3. Vibrational Properties
3.4. Prospective High-Pressure Post-Perovskite Phase
3.5. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Coh, S.; Heeg, T.; Haeni, J.H.; Biegalski, M.D.; Lettieri, J.; Edge, L.F.; O’Brien, K.E.; Bernhagen, M.; Reiche, P.; Uecker, R.; et al. Si-compatible candidates for high-κ dielectrics with the Pbnm perovskite structure. Phys. Rev. B 2010, 82, 064101. [Google Scholar] [CrossRef] [Green Version]
- Schlom, D.G.; Haeni, J.H. A Thermodynamic Approach to Selecting Alternative Gate Dielectrics. MRS Bull. 2002, 27, 198–204. [Google Scholar] [CrossRef]
- Christen, H.M.; Jellison, G.E.; Ohkubo, I.; Huang, S.; Reeves, M.E.; Cicerrella, E.; Freeouf, J.L.; Jia, Y.; Schlom, D.G. Dielectric and optical properties of epitaxial rare-earth scandate films and their crystallization behavior. Appl. Phys. Lett. 2006, 88, 262906. [Google Scholar] [CrossRef]
- Haeni, J.H.; Irvin, P.; Chang, W.; Uecker, R.; Reiche, P.; Li, Y.L.; Choudhury, S.; Tian, W.; Hawley, M.E.; Craigo, B.; et al. Room-temperature ferroelectricity in strained SrTiO3. Nature 2004, 430, 4. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.J.; Biegalski, M.; Li, Y.L.; Sharan, A.; Schubert, J.; Uecker, R.; Reiche, P.; Chen, Y.B.; Pan, X.Q.; Gopalan, V.; et al. Enhancement of Ferroelectricity in Strained BaTiO3 Thin Films. Science 2004, 306, 1005–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biegalski, M.D.; Haeni, J.H.; Trolier-McKinstry, S.; Schlom, D.G.; Brandle, C.D.; Graitis, A.J.V. Thermal expansion of the new perovskite substrates DyScO3 and GdScO3. J. Mater. Res. 2005, 20, 952–958. [Google Scholar] [CrossRef]
- Vasudevarao, A.; Kumar, A.; Tian, L.; Haeni, J.H.; Li, Y.L.; Eklund, C.J.; Jia, Q.X.; Uecker, R.; Reiche, P.; Rabe, K.M.; et al. Multiferroic Domain Dynamics in Strained Strontium Titanate. Phys. Rev. Lett. 2006, 97, 257602. [Google Scholar] [CrossRef] [Green Version]
- Catalan, G.; Janssens, A.; Rispens, G.; Csiszar, S.; Seeck, O.; Rijnders, G.; Blank, D.H.A.; Noheda, B. Polar Domains in Lead Titanate Films under Tensile Strain. Phys. Rev. Lett. 2006, 96, 127602. [Google Scholar] [CrossRef] [Green Version]
- Wördenweber, R.; Hollmann, E.; Kutzner, R.; Schubert, J. Induced ferroelectricity in strained epitaxial SrTiO3 films on various substrates. J. Appl. Phys. 2007, 102, 044119. [Google Scholar] [CrossRef] [Green Version]
- Kužel, P.; Kadlec, F.; Petzelt, J.; Schubert, J.; Panaitov, G. Highly tunable SrTiO3/DyScO3 heterostructures for applications in the terahertz range. Appl. Phys. Lett. 2007, 91, 232911. [Google Scholar] [CrossRef]
- Bura, N.; Srihari, V.; Bhoriya, A.; Yadav, D.; Singh, J.; Poswal, H.K.; Dilawar Sharma, N. Structural stability of orthorhombic DyScO3 under extreme conditions of pressure and temperature. Phys. Rev. B 2022, 106, 024113. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef] [Green Version]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef] [Green Version]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab Initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Hafner, J. Ab Initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for Ab Initio Total-Energy Calc. Using A Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate Ab Initio Parametr. Density Funct. Dispers. Correct. (DFT-D) 94 Elem. H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Le Page, Y.; Saxe, P. Symmetry-general least-squares extraction of elastic data for strained materials from Ab Initio Calc. Stress. Phys. Rev. B 2002, 65, 104104. [Google Scholar] [CrossRef]
- Veličkov, B.; Kahlenberg, V.; Bertram, R.; Bernhagen, M. Crystal chemistry of GdScO3, DyScO3, SmScO3 and NdScO3. Z. Für Krist. 2007, 222, 466–473. [Google Scholar] [CrossRef]
- Celeste, A.; Borondics, F.; Capitani, F. Hydrostaticity of pressure-transmitting media for high pressure infrared spectroscopy. High Press. Res. 2019, 39, 608–618. [Google Scholar] [CrossRef]
- Birch, F. Finite Elastic Strain of Cubic Crystals. Phys. Rev. 1947, 71, 809–824. [Google Scholar] [CrossRef]
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002. [Google Scholar] [CrossRef] [Green Version]
- Materials Data on DyScO3 by Materials Project. Type: Dataset. 2020. Available online: https://materialsproject.org/materials/mp-31120 (accessed on 15 December 2022).
- Schmidbauer, M.; Kwasniewski, A.; Schwarzkopf, J. High-precision absolute lattice parameter determination of SrTiO3, DyScO3 and NdGaO3 single crystals. Acta Crystallogr. B Struct. Sci. 2012, 68, 8–14. [Google Scholar] [CrossRef]
- Glazer, A.M. Simple ways of determining perovskite structures. Acta Cryst. A 1975, 31, 756–762. [Google Scholar] [CrossRef]
- Zhao, Y.; Weidner, D.J.; Parise, J.B.; Cox, D.E. Thermal expansion and structural distortion of perovskite—Data for NaMgF3 perovskite. Part I. Phys. Earth Planet. Inter. 1993, 76, 1–16. [Google Scholar] [CrossRef]
- Zhao, Y.; Weidner, D.J.; Parise, J.B.; Cox, D.E. Critical phenomena and phase transition of perovskite—Data for NaMgF3 perovskite. Part II. Phys. Earth Planet. Inter. 1993, 76, 17–34. [Google Scholar] [CrossRef]
- Martin, C.D.; Parise, J.B. Structure constraints and instability leading to the post-perovskite phase transition of MgSiO3. Earth Planet. Sci. Lett. 2008, 265, 630–640. [Google Scholar] [CrossRef]
- Liferovich, R.P.; Mitchell, R.H. A structural study of ternary lanthanide orthoscandate perovskites. J. Solid State Chem. 2004, 177, 2188–2197. [Google Scholar] [CrossRef]
- Nye, J.F. Physical Properties of Crystals: Their Representation by Tensors and Matrices; Clarendon Press: Oxford, NY, USA; Oxford University Press: Oxford, NY, USA, 1984. [Google Scholar]
- Janovská, M.; Sedlák, P.; Seiner, H.; Landa, M.; Marton, P.; Ondrejkovič, P.; Hlinka, J. Anisotropic elasticity of DyScO3 substrates. J. Phys. Condens. Matter 2012, 24, 385404. [Google Scholar] [CrossRef] [PubMed]
- Born, M.; Huang, K. Dynamical Theory of Crystal Lattices; Oxford Classic Texts in the Physical Sciences; Clarendon Press: Oxford, NY, USA; Oxford University Press: Oxford, NY, USA, 1954. [Google Scholar]
- Mouhat, F.; Coudert, F.X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 2014, 90, 224104. [Google Scholar] [CrossRef] [Green Version]
- Wallace, D.C. Pressure-Volume Variables, Stress-Strain Variables & Wave Propagation. In Thermodynamics of Crystals; Dover Publications: Mineola, NY, USA, 1998. [Google Scholar]
- Grimvall, G.; Magyari-Köpe, B.; Ozoliņš, V.; Persson, K.A. Lattice instabilities in metallic elements. Rev. Mod. Phys. 2012, 84, 945–986. [Google Scholar] [CrossRef] [Green Version]
- Ravindran, P.; Fast, L.; Korzhavyi, P.A.; Johansson, B.; Wills, J.; Eriksson, O. Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2. J. Appl. Phys. 1998, 84, 4891–4904. [Google Scholar] [CrossRef]
- Voigt, W. Lehrbuch der Kristallphysik (mit Ausschluss der Kristalloptik); B.G. Teubner: Leipzig/Berlin, Germany, 1928. [Google Scholar]
- Reuss, A. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Z. Angew. Math. Mech. 1929, 9, 49–58. [Google Scholar] [CrossRef]
- Hill, R. The Elastic Behaviour of a Crystalline Aggregate. Proc. Phys. Soc. A 1952, 65, 349–354. [Google Scholar] [CrossRef]
- Pugh, S. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1954, 45, 823–843. [Google Scholar] [CrossRef]
- Wallace, D.C. Thermoelasticity of Stressed Materials and Comparison of Various Elastic Constants. Phys. Rev. 1967, 162, 776–789. [Google Scholar] [CrossRef]
- Delugas, P.; Fiorentini, V.; Filippetti, A.; Pourtois, G. Cation charge anomalies and high-κ dielectric behavior in DyScO3: Ab Initio Density-Functional and self-interaction-corrected calculations. Phys. Rev. B 2007, 75, 115126. [Google Scholar] [CrossRef]
- Murakami, M.; Hirose, K.; Kawamura, K.; Sata, N.; Ohishi, Y. Post-Perovskite Phase Transition in MgSiO3. Science 2004, 304, 855–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oganov, A.R.; Ono, S. Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s Dїayer. Nature 2004, 430, 445–448. [Google Scholar] [CrossRef] [Green Version]
- Tsuchiya, T.; Tsuchiya, J.; Umemoto, K.; Wentzcovitch, R.M. Phase transition in MgSiO3 perovskite in the earth’s lower mantle. Earth Planet. Sci. Lett. 2004, 224, 241–248. [Google Scholar] [CrossRef]
This Work 0 GPa | Experiment Ref. [25] | Experiment Ref. [30] | This Work 60 GPa | |
---|---|---|---|---|
a (Å) | 5.421 | 5.443 (2) | 5.442417 (54) | 4.944 |
b (Å) | 5.735 | 5.717 (2) | 5.719357 (52) | 5.484 |
c (Å) | 7.935 | 7.901 (2) | 7.904326 (98) | 7.266 |
V (Å) | 246.68 | 245.9 (1) | 246.04 | 197.00 |
This work | 246.7 | 164.7 | 4.42 |
Experiment Ref. [11] | 245.3 | 189.4 | 7.68 |
Ideal Cubic Perovskite | This Work 0 GPa | This Work 60 GPa | Exp. Ref. [25] | ||
---|---|---|---|---|---|
Wyckoff positions | |||||
Dy: 4c (u, v, ¼) | u | ½ | 0.4788 | 0.4733 | 0.48262(5) |
v | ½ | 0.4350 | 0.4165 | 0.43844(5) | |
Sc: 4b (½, 0, 0) | |||||
O1: 4c (u, v, ¼) | u | ½ | 0.6313 | 0.6312 | 0.6261(1) |
v | 0 | 0.0562 | 0.0464 | 0.0560(2) | |
O2: 8d (u, v, w) | u | ¼ | 0.1906 | 0.1717 | 0.1885(5) |
v | ¼ | 0.1936 | 0.1863 | 0.1937(6) | |
w | 0 | 0.0684 | 0.0622 | 0.0658(6) | |
Tilt angles | |||||
in [110] | 0 | 21.26 | 19.10 | 21.00 | |
in [001] | 0 | 13.39 | 17.00 | 13.23 |
This Work | Experiment Ref. [37] | Theory Ref. [37] | |
---|---|---|---|
281 | 302.4 | 310 | |
332 | 345.3 | 339 | |
213 | 254.6 | 236 | |
100 | 103.9 | 96 | |
76 | 86.0 | 73 | |
81 | 84.4 | 77 | |
121 | 124.4 | 96 | |
105 | 130.0 | 132 | |
119 | 132.5 | 106 |
Voigt | Reuss | Hill | |
---|---|---|---|
Bulk modulus (GPa) | 168.4 | 161.5 | 164.9 |
Shear modulus (GPa) | 83.3 | 80.9 | 82.1 |
Young modulus (GPa) | 214.5 | 207.9 | 211.2 |
Poisson´s ratio | 0.288 | 0.285 | 0.286 |
Bulk/Shear ratio | 2.02 | 2.00 | 2.01 |
Mode (R) | (cm) | (cm GPa) | |
---|---|---|---|
A | 107.6 | 0.91 | 1.39 |
122.3 | 1.46 | 1.96 | |
246.6 (253.2) | 1.92 (1.48) | 1.28 (1.11) | |
319.2 (327.7) | 2.02 (1.59) | 1.04 (0.92) | |
433.6 | 3.05 | 1.16 | |
452.9 (458.3) | 3.28 (2.74) | 1.19 (1.13) | |
501.3 | 4.32 | 1.42 | |
B | 108.7 | 1.34 | 2.03 |
215.4 (226.4) | 1.75 (1.62) | 1.34 (1.36) | |
373.3 (380.1) | 3.65 (2.90) | 1.61 (1.45) | |
484.2 (476) | 4.61 (2.50) | 1.57 (1.00) | |
590.8 | 5.42 | 1.51 | |
B | 110.7 | 0.75 | 1.12 |
154.7 (157.4) | 1.30 (1.15) | 1.38 (1.38) | |
308.3 (308.7) | 1.65 (1.80) | 0.88 (1.10) | |
347.2 | 1.89 | 0.90 | |
464.1 | 3.11 | 1.10 | |
534.4 | 2.92 | 0.90 | |
651.2 | 3.83 | 0.97 | |
B | 97.8 | 1.74 | 2.93 |
286.0 | 1.29 | 0.74 | |
441.5 (458.3) | 3.15 (2.74) | 1.17 (1.13) | |
459.8 | 5.66 | 2.03 | |
654.0 | 4.57 | 1.15 | |
Mode (IR) | (cm) | (cm GPa) | |
B | 107.2 | 0.73 | 1.12 |
166.2 | 1.58 | 1.56 | |
280.6 | 0.76 | 0.45 | |
294.0 | 2.68 | 1.50 | |
332.1 | 0.89 | 0.44 | |
372.2 | 3.71 | 1.64 | |
429.2 | 2.69 | 1.03 | |
495.7 | 3.49 | 1.16 | |
533.1 | 3.73 | 1.15 | |
B | 112.2 | 2.41 | 3.53 |
181.6 | 0.33 | 0.30 | |
274.7 | 1.81 | 1.08 | |
337.7 | 1.89 | 0.92 | |
377.6 | 3.69 | 1.61 | |
457.9 | 5.19 | 1.87 | |
464.0 | 6.03 | 2.14 | |
B | 92.3 | 0.66 | 1.18 |
193.4 | 2.02 | 1.72 | |
234.0 | 1.49 | 1.05 | |
281.7 | 1.37 | 0.80 | |
336.0 | 3.27 | 1.60 | |
363.5 | 2.39 | 1.08 | |
430.7 | 3.64 | 1.39 | |
490.2 | 4.58 | 1.54 | |
547.7 | 2.76 | 0.83 | |
Mode (S) | (cm) | (cm GPa) | |
A | 72.6 | 0.48 | 1.09 |
149.3 | 1.34 | 1.48 | |
212.5 | 0.91 | 0.70 | |
239.7 | 0.58 | 0.40 | |
326.5 | 1.90 | 0.96 | |
381.7 | 3.37 | 1.45 | |
421.7 | 7.31 | 2.85 | |
496.8 | 4.51 | 1.49 |
Space Group and Lattice Parameters | Wyckoff Positions |
---|---|
No 63 - C 2/m 2/c 2/m (Cmcm) Å; Å; Å Å | Dy 4c (0.000, 0.756, 0.250) Sc 4b (0.000, 0.500, 0.000) O1 4c (0.000, 0.414, 0.250) O2 8f (0.000, 0.139, 0.063) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanardi, E.; Radescu, S.; Mujica, A.; Rodríguez-Hernández, P.; Muñoz, A. Ab Initio Theoretical Study of DyScO3 at High Pressure. Crystals 2023, 13, 165. https://doi.org/10.3390/cryst13020165
Zanardi E, Radescu S, Mujica A, Rodríguez-Hernández P, Muñoz A. Ab Initio Theoretical Study of DyScO3 at High Pressure. Crystals. 2023; 13(2):165. https://doi.org/10.3390/cryst13020165
Chicago/Turabian StyleZanardi, Enrique, Silvana Radescu, Andrés Mujica, Plácida Rodríguez-Hernández, and Alfonso Muñoz. 2023. "Ab Initio Theoretical Study of DyScO3 at High Pressure" Crystals 13, no. 2: 165. https://doi.org/10.3390/cryst13020165
APA StyleZanardi, E., Radescu, S., Mujica, A., Rodríguez-Hernández, P., & Muñoz, A. (2023). Ab Initio Theoretical Study of DyScO3 at High Pressure. Crystals, 13(2), 165. https://doi.org/10.3390/cryst13020165